## AN ROINN OIDEACHAIS

## LEAVING CERTIFICATE EXAMINATION, 1985

MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks)

THURSDAY, 13 JUNE - MORNING 9.30 to 12.00

Attempt QUESTION I (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown

- 1. (i) If  $\frac{x+a}{y+b} = \frac{x}{y}$ , express  $\frac{a}{b}$  in terms of x and y.
  - (ii) Let  $T_4$  be the fourth term in the expansion of  $\left(1 + \frac{x}{n}\right)^n$ .

Find  $\lim_{n\to\infty} T_4$ .

- (iii) From 7 colours, including Red, a firm chooses 4 to colour marbles. How many different coloured marbles have Red as one of its colours?
- (iv) p(1, 2) and q(0, 4) are two points. The point r is on pq, produced, and such that

$$|pq|:|qr| = 2:1.$$

Find the coordinates of r.

- (v) A tangent to the circle  $x^2 + y^2 = 8$  cuts the positive x-axis and the positive y-axis at points which are equidistant from the origin. Find the equation of this tangent.
- (vi) Evaluate

$$(1 \quad i)\begin{pmatrix} 3 & 2-i \\ 2+i & 3 \end{pmatrix}\begin{pmatrix} 1 \\ -i \end{pmatrix}$$

where  $i = \sqrt{-1}$ .

(vii)  $\frac{1}{3}\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$  is the matrix of a linear transformation f. Find  $f\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ 

If f is the parallel projection of the plane on a line L through the origin, find the equation of L.

- (viii) Write down the image of the point  $(x, \sin x)$  under the central symmetry in the origin and show that the graph of  $x \to \sin x$  is its own image under this transformation.
- (ix) If  $\alpha \pi$  is the period of the function  $x \to \cos(4x 3)$ , prove that  $\alpha = \frac{1}{2}$ .
- (x) Solve the equation

$$X \triangle \{1, -i\} = \{1, i\}$$

in the set of all subsets of  $\{1, i, -i, -1\}$ , where  $\Delta$  is symmetric difference.

OR

(x) Find the coordinates of the focus of the parabola

$$y^2 - 2y + 2x + 9 = 0$$

2. (a) Show by eliminating z that there is no unique solution of the equations

$$5x + 3y - 2z = 5$$
  
 $7x + 4y - 3z = 6$   
 $3x + 2y - z = 4$ 

and find the maximum value of x for which y is non-negative.

(b) Show that the local maximum of the function

$$x \rightarrow 12x^3 - 27x - 27$$

is less than zero.

Verify that the equation

$$12x^3 - 27x - 27 = 0$$

has a root between 1 and 2 and say why there are no other real roots.

3. (a) Use a binomial expansion to evaluate

$$\sqrt{0.998}$$

correct to 8 places of decimals.

Express  $\frac{1}{1 + \sqrt{0.998}}$  in the form  $k(1 - \sqrt{0.998})$  and hence, or otherwise find its value correct to 5 places of decimals.

(b) 4 identical dice are thrown. Find the total number of possible outcomes which do not contain a "6".

Note: The total number of ways of placing r identical objects in n boxes when more than one object can be placed in a box is  $\binom{n+r-1}{r}$ .

4. Find the equation of the line through p(2, 6) which cuts the y-axis at  $\nu$ , where  $|\angle p\nu o| = 135^{\circ}$ , o being the origin.

If t is the point (0, -4), show that 8 is the area of the  $\Delta pvt$ .

L is the line x + y + 4 = 0 and  $q \in L$  where q, t, p are anti-clockwise. If

area of 
$$\Delta pqt = 5$$
 (area of  $\Delta pvt$ )

find the coordinates of q.

Find the coordinates of the image of q under the axial symmetry in pv.

5. H is the circle  $x^2 + y^2 + 8x - 10y + 32 = 0$ . Write down the coordinates of the centre of H and the length of its radius. Draw a rough sketch of H.

K is a circle having its centre on the y-axis.

If x - y + 6 = 0 is the common chord of H and K, find the equation of K.

If f is the axial symmetry of the plane in the y-axis, find the coordinates of the points of intersection of f(H) and f(K).

6. (a) Write down the matrix of the rotation about the origin of angle  $\theta$ .

If 
$$\binom{u}{v}$$
 is the image of  $\binom{h}{k}$  under this rotation, verify that  $\binom{u}{v}$  and  $\binom{h}{k}$  are equidistant from the origin.

Find the matrix of the rotation about the origin which maps the x-axis onto the line y = 3x. What is the equation of the image of the y-axis under this same rotation?

(b) Let a linear transformation be defined by

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}.$$

Find 
$$A \begin{pmatrix} 1 \\ m \end{pmatrix}$$

Find one value of m for which y = mx is its own image under the transformation defined by A.

7. Write down the period and the range of each of the functions defined on  $\mathbb{R}$ :  $x \to \sin x$  and  $x \to (\sin x)^2$ .

Find the slope of the tangent to the graph of each function at the origin and sketch each function in the domain  $-2\pi \le x \le 2\pi$ .

Show that the function  $x \to \frac{\sin x}{(\sin x)^2}$  has a local minimum at  $(\frac{\pi}{2}, 1)$  and sketch the graph of the function in  $0 < x < \pi$  indicating both asymptotes.

Also sketch the graph of the function in  $-\pi < x < 0$ .

8. Assuming that the composition of functions is associative show that the set

$$S = \left\{ \begin{pmatrix} a & b & c \\ a & b & c \end{pmatrix}, \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}, \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix} \right\}$$

is a commutative group under composition where  $\begin{pmatrix} a & b & c \\ p & q & r \end{pmatrix}$  means  $a \to p$ ,  $b \to q$ ,  $c \to r$ . Name the identity element and the inverse of each element.

If a, b, c are the vertices of an equilateral triangle, what is the geometrical meaning of  $\begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}$ ?

Find an element  $K \in S$  such that

$$\begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}^{17} = K \circ \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}.$$

 $Z_3$ , the set  $\{\overline{0}, \overline{1}, \overline{2}\}$  of residue classes modulo 3 is a group under + and the bijection f maps  $Z_3 \rightarrow S$ . Write out the couples of f and verify in each case that

$$f(x + y) = f(x) \circ f(y)$$

where  $x, y \in Z_3$  and  $x \neq y$ .

OR

8. Write down the coordinates of the focus of the parabola  $y^2 = 4ax$ .

Verify that  $p(at^2, 2at)$  and  $q(\frac{a}{t^2}, -\frac{2a}{t})$  are points of the parabola and prove that the three points p, q and the focus are collinear.

The tangent to the parabola at p meets the x-axis at r. Prove that [pr] is bisected by the tangent to the parabola at its vertex.

The tangents to the parabola at p and q meet the y-axis at h and k. Find the equation of the circle having [hk] as diameter and show that pq is a tangent to this circle at (a, 0).