LEAVING CERTIFICATE EXAMINATION, 1981

MATHEMATICS - HIGHER LEVEL - PAPER II (300 marks)

MONDAY, 15 JUNE - MORNING 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all your work is not clearly shown

. (i) If $k, n \in \mathbb{N}$, find the maximum value of k for which

$$\sqrt{14^2 + 112^2} = k\sqrt{n} .$$

- (ii) Find the least number of years in which a sum of money will more than double itself at 10% per annum, compound interest.
- (iii) Write 1.47 = 1.4777 ... in the form $\frac{a}{b}$ where $a, b \in \mathbb{N}$.
- (iv) The *n*th term of a series is given by $T_n = (1 n)^2.$

Find the sum of the first 20 terms.

- (v) Differentiate from first principles the function $x \to \sin x$.
- (vi) Differentiate $\frac{x}{1+x^2}$ with respect to x.
- (vii) A sequence is defined by $x_1' = \frac{1}{2}$ $(1 + x_r) x_{r+1} = (1 x_r), r = 1, 2, \dots$

Find the sum of the first 24 terms.

(viii) A function y = f(x), for $x \in \mathbb{R}$ is defined as follows:

$$y = \sqrt{4 - x^2}, \quad 0 \le x \le 2$$
$$y = x - 2, \quad x \ge 2.$$

Indicate the graph if the function for $x \ge 0$.

- (ix) A sequence is said to be monotonic increasing if $T_{n+1} > T_n$ for all n. The nth term of a sequence is $T_n = 2 - \frac{1}{n}$ Test if the sequence is monotonic increasing.
- (x) \bar{x} and σ are the mean and the standard deviation of the set x_1 , x_2 , x_3 . Find the mean and the standard deviation of the set

are standard deviation of the set
$$\frac{x_1 - \overline{x}}{\sigma}$$
, $\frac{x_2 - \overline{x}}{\sigma}$, $\frac{x_3 - \overline{x}}{\sigma}$

<u>or</u>

(x) \overrightarrow{p} and \overrightarrow{q} are two vectors as in diagram. Express \overrightarrow{qp} in terms of \overrightarrow{p} and \overrightarrow{q} and hence use the scalar product $\overrightarrow{qp} \cdot \overrightarrow{qp}$ to prove the cosine rule for the triangle opq.

2. (a) $\frac{1+2i}{1-i}$ in a root of the quadratic equation

$$ax^2 + bx + 5 = 0$$

where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$. Find the values of a and b.

(b) If 1, z_1 , z_2 , z_3 , z_4 are the roots of

$$z^5 - 1 = 0$$

show that $z_1 + z_2 + z_3 + z_4 = -1$ and deduce that

$$\sum_{n=1}^{4} \left(\cos \frac{2n\pi}{5} + i \sin \frac{2n\pi}{5} \right) = -1.$$

(c) If z = x + iy and $\bar{z} = x - iy$, prove that the image of x + iy under the transformation

$$z \rightarrow \frac{1}{2} (z + \overline{z}) - \frac{i}{2} (z - \overline{z})$$

is a real number.

Indicate on the Argand diagram the set

$$|z| \leq$$

and find the length of its image under the above transformation.

- 3. (a) Find $\lim_{x \to 0} \frac{(2-x)^3 8}{x}$.
 - (b) Prove by induction, or otherwise, that

$$1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(c) a^2 , x, b^2 are in arithmetic sequence.

 a^2 , y, b^2 are in geometric sequence where y > 0.

Express x and y in terms of a and b and hence prove that

$$x \ge v$$

Deduce that

$$(a + b)(\frac{1}{a} + \frac{1}{b}) \ge 4$$
.

4. (a) Find the value of the derivative of each of the following at the given value of x:

(i)
$$\sqrt{\frac{\sin x}{1 - \cos x}}$$
 at $x = \frac{\pi}{2}$

- (ii) $\log (1 + 2x^2)^3$ at $x = \frac{1}{2}$
- (iii) $e^{1-\sin x}$ at $x=\pi$.
- (b) If $x = \sin t$ and $y = \sin nt$, express $\frac{dy}{dx}$ in terms of t and hence prove that

$$(1-x^2) \left[\frac{dy}{dx}\right]^2 = n^2 (1-y^2)$$

for -1 < x < 1.

5. The height h cm of a right circular cone is increasing at the rate of $\frac{1}{\pi}$ cm per second. The slapt height remains constant and equal to 9 cm.

Find in terms of h the rate at which the volume of the cone is increasing and calculate this rate when h = 4 cm.

Deduce the value of h for which the volume is a maximum and calculate this maximum in terms of π .

- (i) Using division, or otherwise, find $\int_{1}^{2} \frac{x^3 + x^2 + x + 1}{x^2 + 1} dx$.
 - (ii) Evaluate $\int_{1}^{\frac{n}{2}} \cos x \cos 2x \ dx$
 - (iii) Evaluate $\int_{1}^{1} \frac{x}{x^{2} + 1} dx$
 - (b) Find the volume generated by rotating the graph of

$$\frac{x^2}{2^2} + \frac{y^2}{1^2} = 1$$

about the x-axis.

is the n-th term of a sequence.

Test the sequence for convergence.

 $\frac{(n+1)(n+2)}{(n+3)(n+4)}$ is the *n*-th term of a series.

Test the series for convergence.

(b) Test for convergence the series

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n \cdot 4^n} \text{ for } x > 0.$$

(c) $u_1 + u_2 + u_3 + \ldots + u_n + \ldots$ is a convergent series of positive terms $\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = k > 1.$

Illustrate on a diagram that for
$$e > 0$$

$$1 < k - e < \frac{u_n}{u_{n+1}} \quad \text{(for large } n\text{)}$$

and hence deduce that

$$u_{n+1} + u_{n+2} < u_n(\alpha + \alpha^2)$$

where $\alpha < 1$.

8. (a) Prove that $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ where P(X) is the probability of the event X.

If E and F are independent events where $P(E) = \frac{1}{2}$ and $P(F) = \frac{3}{4}$, find the value of $P(E \cup F)$.

(b) Two children A and B visit a sweet shop every day between 1 p.m. and 1.30 p.m. and each stays for 6 minutes. A arrives x minutes after 1 p.m. and B arrives y minutes after 1 p.m.

If x < y, show that y < x + 6 is the condition that the children meet.

If y < x, find the condition that the children meet.

Using the same axes and scales plot these four inequalities for 0 < x < 30and 0 < y < 30 and hence find the probability that the children meet.

Over a period of 100 days find the probability that the children meet on at least

<u>or</u>

8. (a) If r is any point in the line ab, prove that $\overrightarrow{r} = t\overrightarrow{b} + (1 - t)\overrightarrow{a}$, $t \in \mathbb{R}$

Given that |ap|: |pb| = m: n, express \overrightarrow{p} in terms of \overrightarrow{a} and \overrightarrow{b} .

Given that |aq| : |qb| = m : n, express \overrightarrow{q} in terms of \overrightarrow{a} and \overrightarrow{b} .

If the origin o is taken on the perpendicular bisector of [ab], prove that

$$\overrightarrow{op}$$
 . $\overrightarrow{oq} = |\overrightarrow{oa}|^2$

where \overrightarrow{op} . \overrightarrow{oq} means the scalar product of \overrightarrow{op} and \overrightarrow{oq} .

- (b) The points u, v, w, represent the vectors $\vec{i} 2\vec{j}$, $-3\vec{i} + \vec{j}$ and $3\vec{i} + k\vec{j}$, respectively. If the three points are collinear, find the value of k.
- (c) In any $\triangle abc$ prove that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is the orthocentre of the triangle when the circumcentre of the triangle is taken as origin.

$$\overrightarrow{4i} + 5\overrightarrow{j}$$
 is the circumcentre of a $\triangle abc$ where $\overrightarrow{a} = \overrightarrow{i} + 9\overrightarrow{j}$, $\overrightarrow{b} = 7\overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{c} = 4\overrightarrow{i} + 10\overrightarrow{j}$.

Find in terms of \vec{i} and \vec{j} the orthocentre of the triangle and draw a rough diagram to illustrate your answer.