LEAVING CERTIFICATE EXAMINATION, 1979

MATHEMATICS - HIGHER LEVEL - PAPER II (300 marks)

WEDNESDAY, 13 JUNE - MORNING 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

- 1. (i) Illustrate on the Argand diagram the locus of z such that |z + 3i| = |z - 3|.
 - £100 is invested at the beginning of each year for 10 consecutive years at 15% per annum compound interest. Express in the form $k(q^n 1)$ the amount of this investment one year after the final investment was made.
 - The sum of the first 21 terms of an arithmetic series is zero. Express in terms of a (i.e. the first term of the series) the sum of the next 21 terms.
 - Draw a rough graph of the curve $y^2 = \frac{x}{1-x}$, assuming the y-axis is a tangent to it.
 - The radius r of a circle is increasing at the rate of 3.5 cm/sec. Find in terms of π the rate at which the area is increasing when $r = 3\frac{1}{7}$ cm.
 - (vi) If $u_n = 2 + \frac{1}{n}$ is the *n*th term of a sequence, find the least value of k for which $u_n \le k$ for all n. Is there a least value of k for which $u_n < k$ for all n? Give your reason.

 - (vii) Find $\int \sin^2(2x + 1) dx + \int \cos^2(2x + 1) dx$.
 - (viii) Test for convergence the series $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \cdots + \frac{1}{n\sqrt{n}} + \cdots$
 - (ix) Let $x_{r+1} = x_r(2-4x_r)$, $r = 1, 2, 3, \cdots$. If $x_1 = 0.2$, find x_2 and x_3 .
 - (x) If f is a linear transformation, prove that the points which represent $f(\vec{o})$, $f(\vec{a})$, $f(\vec{b})$, $f(\vec{a} + \vec{b})$ form a parallelogram where o is the origin.
- (x) \overline{x} and σ are the mean and standard deviation of $x_1, x_2, x_3, \dots, x_n$. $\frac{x_1 - \overline{x}}{\sigma}$, $\frac{x_2 - \overline{x}}{\sigma}$, $\frac{x_3 - \overline{x}}{\sigma}$, ..., $\frac{x_n - \overline{x}}{\sigma}$
 - 2. (a) If $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$ and rl z means the real part of z, prove $z_1 \cdot \overline{z}_2 + \overline{z}_1 \cdot z_2 = 2rl z_1 \cdot \overline{z}_2$

and illustrate on a diagram $rl z \leq |z|$.

- (b) If $1, z_1, z_2, z_3$ are the roots of $z^4 1 = 0$, evaluate $(1 z_1)(1 z_2)(1 z_3)$.
- (c) Find the image of the line |z-1|=|z-i| under the transformation $z\to i\,\overline{z}$.
- 3. Prove by induction that

$$\frac{1}{n!} < \frac{1}{2^{n-1}}$$
 for all $n > 2$ where $n \in \mathbb{N}$.

The *n*th term of a sequence is $2 - \frac{1}{2^{n-1}}$. Prove that the sequence is increasing.

$$1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$$

is bounded above by 3 (i.e. < 3 for all n) and that the sum of the series

$$1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} + \cdots$$

does not exceed 3.

- 4. (a) Differentiate from first principles the function $x \to \sin x$.
 - (b) (i) Find the derivative of $x\sqrt{9-x^2}$ and write your answer in the form $\frac{f(x)}{\sqrt{g(x)}}$
 - (ii) Find the slope of the tangent at the point (1, 1) to the graph of $y = e^{\left(\frac{1-x}{1+x}\right)}$
 - (c) If $x = \cos t + t \sin t$ and $y = \sin t t \cos t$, find $\frac{dy}{dx}$ in terms of t.
- 5. abc is an isosceles triangle, as in diagram, having |ab| = |ac| and $am \perp bc$. Let |bm| = k and |am| = h. p is any point in |am| and $|\angle apb| = \theta = |\angle apc|$.

Express |pb| and |pc| in terms of k and θ . Express |pa| in terms of k, θ , h.

Hence find the minimum value of |pa|+|pb|+|pc| in terms of k and h. Verify that this minimum is less than |ma|+|mb|+|mc|.

- 6. (a) Evaluate (i) $\int_0^1 x^{2\frac{1}{2}} (\sqrt{x} + 7) dx$ (ii) $\int_0^{\sqrt{3}} \frac{x dx}{\sqrt{1 + x^2}}$ (iii) $\int_0^{\pi/2} \frac{\cos\theta \ d\theta}{\sin^2\theta + 4\sin\theta + 5}$.
 - (b) Let A_n be the area of the region in the first quadrant enclosed between the graphs y = x and $y = x^{2n}$, $n \in \mathbb{N}_0$, as in diagram.

Prove $\lim_{n\to\infty} A_n$ = area of $\triangle pqr$, where $pr \perp qr$.

7. (a) $\frac{n^2 + 3n + 6}{3n^2 + 5}$ is the *n*th term of a sequence. Prove that the sequence is convergent and investigate if the series $\sum_{n=1}^{\infty} \frac{n^2 + 3n + 6}{3n^2 + 5}$ is convergent.

(b) Test for convergence the series $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2} = \frac{1}{x^2 + 1^2} + \frac{1}{x^2 + 2^2} + \cdots$

- (c) Test for convergence or divergence the series $\sum_{n=1}^{\infty} \frac{(n+1)x^n}{(n+2)(n+3)}$ for x > 0.
- 8. (a) If E and F are mutually exclusive events, prove $P(E \cup F) = P(E) + P(F)$, where P(X) denotes the probability of the event X.
 - (b) x and z are random variables having normal distributions. \overline{x} and 0 are the means of x and z, respectively. σ and 1 are the standard deviations of x and z, respectively. Write down a relation between z and x, \overline{x} , σ .

A certain model of car does on average 60 km per gallon of petrol the standard deviation being 10 km. One car is selected at random from a large batch of the same model. Find the probability that the car selected does between 50 and 70 km per gallon of petrol.

- (c) A glass rod of unit length falls and breaks into three pieces of lengths x, y, 1 (x + y). Indicate on a diagram all the points (x, y) which satisfy the inequality x + y < 1 and find the probability that the three pieces form a triangle.
- OR 8. (a) If $\vec{x} = -3\vec{i} + 4\vec{j}$ and $\vec{y} = 5\vec{i} + 12\vec{j}$ and $\vec{z} = |\vec{y}| \vec{x} + |\vec{x}| \vec{y}$, verify that z is on the bisector of the $\angle xoy$, where o is the origin.
 - of the $\angle xoy$, where o is the origin. (b) If r is a point on the line pq, prove $\vec{r} = t\vec{q} + (1-t)\vec{p}$ for $t \in \mathbb{R}$. Deduce that if r divides [pq] internally in the ratio m:n, then

$$\overrightarrow{r} = \frac{m\overrightarrow{q} + n\overrightarrow{p}}{m + n}.$$

In the $\triangle abc$ |ab| = u and |ac| = v and ar bisects the $\triangle bac$.

Taking a as origin, express \overrightarrow{r} in terms of the unit vector along ab, the unit vector along ac and a scalar t.

If r divides [bc] in the ratio m:n, prove u:v=m:n.

