49

AN ROINN OIDEACHAIS

LEAVING CERTIFICATE EXAMINATION, 1974

MATHEMATICS-HIGHER LEVEL-PAPER II (300 marks)

TUESDAY, 18 JUNE-MORNING 9.30 to 12

Six questions to be answered.

All questions carry equal marks.

Mathematics Tables may be obtained from the Superintendent.

- 1. (a) The roots of the equation $x^2 + 2x + 3 = 0$ are α and β . Find
 - (i) the equation whose roots are $1 \frac{1}{\alpha}$, $1 \frac{1}{\beta}$,
 - (ii) the value of $\alpha^3 + \beta^3$.
 - (b) Solve the equation

$$32x^3 - 14x + 3 = 0,$$

given that one root is twice another root.

- 2. (a) A test consists of seven questions, to each of which a candidate must give one of three possible answers. If the candidate must score 1, 2 or 3 points for each of the seven questions, in how many different ways can a candidate score exactly 18 points in the test?
 - (b) Write down the first three terms of the binomial $(1 + ax)^b$ in ascending powers of x.

If the first three terms are $1 + 3x + \frac{27}{2}x^2$, find a and b.

Using these values for a and b in $(1 + ax)^b$, find the percentage error, correct to two decimal places, if the sum of the first three terms is used as an approximate value of the binomial when x = 0.06.

3. (a) Examine for convergence the following series:

(i)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!}$$

(i)
$$\sum_{n=0}^{\infty} \frac{n^2}{n!}$$
 (ii) $\sum_{n=1}^{\infty} \frac{2n+1}{n^4+3n}$

(b) State the domain of values of x for which |x| < 1.

The first term of a geometric series is 2 and the common ratio is $\left(2k-\frac{1}{k}\right)$, where k>0. Find

- (i) the domain of values of k for which the series converges,
- (ii) the sum to infinity of this series when $k = \frac{3}{4}$.
- 4. (a) Evaluate $\lim_{x\to 2} \frac{x-2}{x^2-4}$.

What value, if any, has $\frac{x-2}{x^2-4}$ when x=2?

Sketch the graph of the function $x \to \frac{x-2}{x^2-4}$ in the domain $-4 \le x \le 4$, $x \in R$.

(b) Show that the sum to n terms of the series

$$\frac{1}{2.4} + \frac{1}{3.5} + \ldots + \frac{1}{(r+1)\; (r+3)}$$

is

$$\frac{5}{12} - \frac{1}{2} \left(\frac{1}{n+2} + \frac{1}{n+3} \right)$$
,

and hence, or otherwise, show that the series

$$\sum_{r=1}^{\infty} \frac{1}{(r+1)(r+3)}$$

is convergent.

Deduce that the series $\sum_{r=1}^{\infty} \frac{1}{(r+1)(r+3)} \frac{x^r}{2^r}$ converges for $0 < x \le 2, x \in R$.

5. (a) From first principles, differentiate with respect to x the function

$$x \to x^2 + \frac{1}{x^2}$$
, $(x \neq 0)$.

(b) Differentiate with respect to x

(i)
$$\sqrt{\frac{x}{x+1}}$$
, $x > 0$ (ii) $\sin^{-1}(\cos x)$

(iii) loge tan2 x.

(c) If
$$x=\frac{2}{1+3t}$$
, $(t\neq -\frac{1}{3})$, show that $x\frac{d^2x}{dt^2}=2\left(\frac{dx}{dt}\right)^2$.

6. The total length of the twelve edges of a rectangular box is 64 cm and the total surface area is 104 cm². If x cm is the length of any one edge and if V cm³ is the volume of the box, show that

$$V = 52x - 16x^2 + x^3.$$

Find the maximum volume of the box and the lengths of the edges in this maximum case.

7. f and g are functions defined as follows:

$$f: x \to \frac{e^x + e^{-x}}{2} = f(x), \ x \in R$$

$$g: x \to \frac{e^x - e^{-x}}{2} = g(x), x \in R.$$

(i) Show that f(-x) = f(x) and g(-x) = -g(x).

(ii) Show that f'(x) = g(x) where f' means $\frac{df}{dx}$ and hence, or otherwise, evaluate

$$\int_{0}^{1/2} 2 f(x) g(x) dx.$$

(iii) Show that f(x) is positive for all values of x and hence prove that g is an increasing function of x

(iv) Prove that g has a point of inflexion at (0, 0) and sketch the graph of g.

8. (a) Evaluate

(i)
$$\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

(ii)
$$\int_{0}^{8} \frac{x \, dx}{9 - x}$$

(i)
$$\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$
 (ii) $\int_{0}^{8} \frac{x \, dx}{9 - x}$ (iii) $\int_{0}^{\pi/2} \sin 2x (1 + \sin^{2} x) \, dx$.

Write down the first five terms of the expansion of $(1+x^2)^{-1}$ and taking the integral of these between

0 and 1 as an approximation for $\int_{0}^{1} \frac{dx}{1+x^{2}}$ find an approximate value of $\frac{\pi}{4}$.

(See tables p. 41).

9. Sketch the graph of the function

$$f: R \rightarrow R: x \rightarrow \frac{1-x^2}{x^2-4}$$

in the domain -2 < x < 2. Indicate the region bounded by the graph and the x-axis and calculate the volume generated by rotating this region about the y-axis.

The tangent at the point (x_n, y_n) on the graph of the function $x \rightarrow f(x) = y$ cuts the x-axis at $(x_{n+}, 0)$ as in diagram.

Show that
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \ , \ \text{where} \ f' \ \text{means} \ \frac{df}{dx} \ .$$

If $f(x) = x^3 - 2$, prove that

$$x_{n+1} = \frac{2}{3} x_n + \frac{2}{3x_n^2} .$$

Verify that one root of the equation $x^3 - 2 = 0$ lies between 11 and 11.

Taking $1\frac{1}{4}$ as an approximation for $\sqrt[3]{2}$, use the above formula to find a further approximation.

