LEAVING CERTIFICATE EXAMINATION, 1972

MATHEMATICS - HIGHER LEVEL - PAPER I (300 marks)

THURSDAY, 8th JUNE - MORNING, 9.45 to 12.15

Six questions to be answered.

All questions are of equal value.

Mathematics Tables may be obtained from the Superintendent.

- 1. (a) Show that if x = t + 2 and y = 2t 1, the point (x, y) will be in the line containing (0, -5) and (3, 1).
 - (b) Find the co-ordinates of the orthocentre of the triangle with vertices at (9, 1) (5, 7), (3, 2).
- 2. Find the equation of the circle containing the points (4, 2), (6, 4), (2, 4). Compute the distance from the centre of the circle to any chord of length $2\sqrt{3}$. Hence, or otherwise, find the equations of the lines with slope $\frac{3}{4}$ from which equal intercepts of length $2\sqrt{3}$ in each case, are cut off by the circle.
- 3. Find the co-ordinates of the vertex and focus of the parabola $y^2-6y-4x+17=0$. Find the equation of the tangent to the parabola which has slope $\frac{2}{3}$. Find the equation of the normal to the hyperbola $\frac{x^2}{6}-y^2=\frac{1}{2}$ at the point (-3,-1).
 - 4. (a) Explain the difference between
 - (i) the result of the multiplication of a vector by a scalar, and
 - (ii) the scalar product of two vectors.
 - (b) Say whether each of the following expressions represents a vector or a scalar, and give your reasons:
 - (i) $\overrightarrow{x} \cdot \overrightarrow{y} + \overrightarrow{y} \cdot \overrightarrow{z} + \overrightarrow{z} \cdot \overrightarrow{x}$
 - (ii) (x,y)(z,x)z
 - (iii) $(x,y)_{z}^{+} + (z,y)_{x}^{+}$
 - (c) The position vectors of the vertices of a triangle are $\overset{+}{o}$, $\overset{+}{x}$, $\overset{+}{y}$, respectively. Show that its area, A, is given by the formula

$$4A^{2} = |\dot{x}|^{2} |\dot{y}|^{2} - (\dot{x}.\dot{y})^{2}$$

5. (a) (i) If $u_n = \sin^n \theta + \cos^n \theta$, prove that

$$\frac{u_3 - u_5}{u_1} = \frac{u_5 - u_7}{u_3} .$$

- (ii) Prove that $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$.
- (b) Give the domain and range (principal values) of each of the functions $\sin^{-1}x$, $\cos^{-1}x$, $\tan^{-1}x$, and sketch the graph of the function in each case.
- 6. Let $\overset{+}{c}$ be a fixed non-zero vector in $\mathbb{I}o$. Prove that the transformation $\overset{+}{x} + \overset{+}{x} + \overset{+}{c}$ of $\mathbb{I}o$ is not linear.

Let \vec{e}_1 and \vec{e}_2 be the orthonormal vectors $\begin{pmatrix} 1 \\ o \end{pmatrix}$, $\begin{pmatrix} o \\ 1 \end{pmatrix}$ in \mathbb{R}^2 . Let t be a linear transformation such that $t(\vec{e}_1) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $t(\vec{e}_2) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. In a diagram illustrate the square whose vertices are the position vectors $\begin{pmatrix} o \\ o \end{pmatrix}$, $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 3 \end{pmatrix}$, and show clearly its image under the transformation t. Is t an isometry? Explain your answer.

- 7. A rotation r with the origin as centre through an angle θ follows a projection p on the x-axis parallel to the y-axis, where these axes are perpendicular to each other. \vec{e}_1 and \vec{e}_2 are unit vectors chosen along the x-axis and the y-axis, respectively. If the vector $\frac{5}{\sqrt{2}}$ $(\vec{e}_1 + \vec{e}_2)$ is the image of the vector $5\vec{e}_1 + 3\vec{e}_2$, find
 - (i) the matrix of the projection p,
 - (ii) the measure of the angle θ ,
- (iii) the matrix of the rotation r, and illustrate the vectors \vec{x} such that $r(p(\vec{x})) = 3(\vec{e}_1 + \vec{e}_2)$.
 - 8. What is meant by saying that " $\cos x$ has a period of 2π "? If $x \in \mathbb{R}$ what is the range of values of each of these: $\frac{1}{2}\cos 2x$; $\sin x + \cos x$; $\sin x \cos x$? Find the least positive period of

$$f(x) = 3\sin(k - \frac{\pi x}{2}), k \text{ constant.}$$

- 9. (a) Illustrate on an Argand Diagram
 - (i) $\frac{1}{3}(2+i5)$, (ii) the solution of $Z^2 = i$.
 - (b) Prove that $|Z_1 + Z_2|^2 + |Z_1 Z_2|^2 = 2[|Z_1|^2 + |Z_2|^2]$.
 - (c) Find complex numbers Z = x + iy and W = u + iv such that Z + iW = 1 and iZ + W = 1 + i.
 - (d) Show by a diagram the solution set of $|z 2| = \frac{1}{2}$.
- 10. A. (i) Use suitable illustrations to show that translations form a commutative group under addition.
 - (ii) If $M_2 = \{2x \mid x \in Z\}$, determine whether M_2 , + and M_2 , x are groups. If $H = Z \setminus M_2$, is H, x a group ? Explain your answer.
 - (iii) The following is the Cayley Table of the group G, * of order four:

*	I	а	Ъ	c
I	I	a	Ъ	c
a	a	I	c	Ъ
Ъ	Ь	c	I	а
c	c	b	a	I

Is G, * isomorphic to the group of rotations of the square (of measure 0° , 90° , 180° , 270°) ? Explain your answer.

OR

- 10. B. (i) What do you mean by saying that two events are dependent ?
 - (ii) A bag contains 5 black balls and 4 white balls. One ball is drawn at a time and not replaced, and this process is continued until all the balls are drawn. What is the probability that the balls drawn are alternately black and white?
 - (iii) A survey in a large city indicated that 40% of the men aged over 35 years pay rates. If 10 men aged over 35 years are chosen at random what is the probability that exactly 6 of them do <u>not</u> pay rates ?