LEAVING CERTIFICATE EXAMINATION, 1970

MATHEMATICS (HONOURS) - PAPER II (300 marks)

MONDAY, 15th JUNE - MORNING 9.30 to 12

Six questions to be answered. All questions are of equal value. Mathematical Tables may be obtained from the Superintendent.

What is a complex number ?
Define the sum of two complex numbers.
Find the real and the imaginary parts of the number

$$\frac{3-4i}{-7+i}$$

If a and b are complex numbers prove that $|a + b| \le |a| + |b|$. Prove

$$|a + b + c| \le |a| + |b| + |c|$$
.

2. The graph of the function ϕ which is defined for each $x \in \mathbb{R}$ as follows: $\phi(x) = x^4 + bx^3 + cx^2 + dx + e$

is a curve which passes through the origin and has either maximum or minimum values at x = -2, x = 1 and x = 3. Determine b, c, d and e. Find the equation of the tangent to the curve at x = -1.

3. (a) (i) Say whether or not each of these sequences has a limit. Give reasons for your answers and give the value of the limit where such limit exists. (Assume the patterns persist.)

1,
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$,
1, 0, $\frac{1}{2}$, 0, $\frac{1}{4}$, 0, $\frac{1}{8}$, 0, $\frac{1}{16}$,

- (ii) The n^{th} term of a series is $\frac{x^{2n+1}}{(2n+1)}$! Prove that the series converges.
- (b) A_1 , A_2 , A_3 , A_n , is an infinite sequence of subsets of the set $N_0 = \{1, 2, 3, 4, \ldots\}$ such that

 $A_n = \{n + k \mid n, k \in \mathbb{N}_0\} \text{ [i.e. } A_n = \{n + 1, n + 2, n + 3, \dots\}]$ If $B_n = A'_n$ (the complement of A_n) show that $B_m \subset B_n \text{ if } m < n \pmod{m \in \mathbb{N}_0}$

If $C_m = \{A_n \mid A_n \cap B_m \neq \phi\}$ list the elements of C_5 .

4. It is given that for x > 0 and $x \in \mathbb{R}$ the function $y = f(x) = \log_e x$

has the properties

(a)
$$f(1) = 0$$

(b)
$$\frac{dy}{dx} = f'(x) = \frac{1}{x}$$

and it is also given that for any two functions g(x) and h(x), both defined over a closed interval

$$g'(x) - h'(x) = 0$$

implies that g(x) - h(x) is a constant.

Prove that:

- (i) $\frac{d}{dx} \log_e (ax) = \frac{1}{x}$ if a > 0 is a constant and deduce that $\log_e (ax) = \log_e x + \log_e a$ (Hint: Put ax = u)
- (ii) $\frac{d}{dx}(\log_e x^k) = \frac{k}{x}$; k any rational number and deduce that $\log_e (x^k) = k \log_e x$

(iii)
$$\log_e \frac{x}{a} = \log_e x - \log_e a$$

5. If $x \in \mathbb{R}$, but $x \neq 1$ differentiate from first principles with respect to x

$$\frac{x}{1+x}$$

Differentiate with respect to x

- (i) θ^{2x} ; $x \in \mathbb{R}$
- (ii) $x \log ax$; x > 0, a > 0 a constant
- (iii) $\theta^{-2x}\cos x$; $x \in \mathbb{R}$

Find the values of c for which e^{-cx} is a solution of

$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} - 9y = 0.$$

6. A container is in the shape of a huge inverted cone of height 5 feet and radius of base 4 feet. If water is flowing out of the container at a constant rate of 3 cu. ft. per minute find the rate at which the level of the water is falling when the depth is 2 feet.

7. (a) Evaluate

(i)
$$\int_{-\kappa}^{\kappa} (a + bx + cx^2) dx$$
; a, b, c constants.

$$(11)\int_1^2 \pi x^2 dy$$
 where $xy = c^2$; c constant.

(iii)
$$\int_{-c}^{+c} \frac{c}{2} (e^{\frac{x}{c}} - e^{-\frac{x}{c}}) dx$$

(b) If f and g are functions such that f(x) < g(x) for each x belonging to the closed interval [a, b] show by illustrations that the following are true

(i)
$$\int_{a}^{b} f(x)dx \ge 0 \text{ if } f(x) \ge 0.$$

(ii)
$$\int_a^b f(x)dx < \int_a^b g(x)dx.$$

$$\int_{0}^{\frac{1}{2}} \frac{x \, dx}{1 + x^{2}} < \int_{0}^{\frac{1}{2}} \frac{dx}{1 + x^{2}}$$

8. £400 and 500 man—hours are available to sow a 10—acre field which is suitable for growing one or both of two crops A and B. Crop A requires 80 man—hours per acre to grow and costs £60 per acre to sow. Crop B requires 30 man—hours per acre to grow and costs £40 per acre to sow. Find the greatest amount of crop B which can be sown if the profit is to be a maximum and if the profit per acre from crop A is double that from crop B. (Note: x men working for y hours is xy man-hours)

- 9. (a) Three dice are tossed together. Calculate the probability that the sum of the scores will be less than seven.
 - (b) If on average rain falls on 10 days in every 30 find the probability

 - (i) that a week will be dry,(ii) that rain will fall on just 2 days of a week.

10. f and ϕ are two functions defined as follows

$$f(x) = x^2 + 1$$
, $x \in \mathbb{R}$; $\phi(x) = -x$, $x \in \mathbb{R}$.

- (a) Determine the range of each function.
- (b) Find (i) $\phi(2)$, (ii) 3f(-2), (iii) $f(\phi(2))$, (iv) $\phi(f(2))$
- (c) Is $f(\phi(2)) = \phi(f(2))$?
- (d) Write $\phi\left(f(x)\right)$ as an expression in x.

Can the equation $f(x)=\phi(x)$ be solved for $x\in\mathbb{R}$? Explain your answer, and illustrate it by a diagram.