LEAVING CERTIFICATE EXAMINATION, 1969

MATHEMATICS (HONOURS) - PAPER I - (300 marks)

WEDNESDAY, 11th JUNE - Morning, 9.30 to 12

Six questions to be answered. All questions carry equal marks. Mathematical Tables may be had from the Superintendent. R is the set of real numbers.

1. A buoy of height 12 feet consists of a cone mounted on a heavy cylindrical base, and floats with the cone uppermost. The cone and cylinder are equal in volume and have the same radius — 3 ft. at the base. What is the volume of the submerged portion of the buoy if the buoy floats so that the apex of the cone is 6 feet above the waterline?

- 2. (a) (i) Illustrate the polar of a point x with respect to a circle C. Explain the illustration.
 - (ii) Prove that if the polar of a point P passes through another point T then the polar of T passes through P.
 - (b) ABC is a triangle no side of which passes through the centre of a given circle. The polars of A, B, C with respect to the circle determine a triangle A'B'C'. Prove that the sides of ABC are the polars of A'B, C' with respect to the circle.
- 3. (a) A pencil OP, OQ, OR, OS is cut by a transversal in the points P, Q, R, S. Prove that

$$\frac{\sin \ \text{PÔQ} \ \cdot \ \sin \ \text{RÔS}}{\sin \ \text{QÔR} \ \cdot \ \sin \ \text{SÓP}} = \frac{\text{PQ} \ \cdot \ \text{RS}}{\text{QR} \ \cdot \ \text{SP}}$$

(b) If PQRS is a harmonic range prove

$$\frac{1}{PQ} + \frac{1}{PS} = \frac{2}{PR} .$$

- 4. (a) What loci are represented by the equations (1) $(x+y)^2 - b^2 = 0$, (11) y(x-b) = 0. Sketch the locus in each case.
 - (b) Find the co-ordinates of the centre, and the radius of the circle whose equation 18 $x^2 + y^2 - 4x - 3y + 6 = 0$. Find the equation of a circle which cuts this circle at right angles.
- 5. (a) For what value of k does the line y = 3x + k touch the parabola $y^2 = 4(x + 1)$?
 - (b) Calculate the area of the surface enclosed by the parabola $y^2 = 4x$ and the line x + y = 8.
- 6. If the x-axis is the initial line
 - (a) give the polar co-ordinates of each of the following points $(2, 1), (-3, 0), (-2, 2), (1, -\sqrt{3})$
 - (b) find the polar equation of the line through the origin which contains the point whose polar co-ordinate is $(5, \frac{2\pi}{7})$
 - (c) Sketch the curves (1) $r = 2 \cos \theta$, (11) $r = 2 \cos \theta + 3$.

7.5 Four coins were tossed together and the number x of heads resulting was observed. The operation was performed 160 times and the frequencies that were obtained for the different values of x are shown in the following table:

w	0	1	2	3	4
frequency of a	50	70	3.0	8	2

(i) Represent the table by a histogram.
(ii) Calculate the mean of the distribution.

Would you suspect that the coins were biased? If so, what frequencies would you predict for the different values of x had the coins been unbiased?

M.47

- 8. (a) Given $\vec{a} = 3t + 4j$; $\vec{b} = 2j t$; $\vec{x} = \vec{b} \vec{a}$ (i) Calculate $\vec{a} \cdot \vec{x}$ and state whether it is a vector or a scalar. (ii) find the angle between \vec{a} and \vec{b} .
 - (b) Given $\vec{y} = \alpha i + \beta j$ and $\vec{z} = \beta i + \alpha j$.

 If $\vec{y} \cdot \vec{z} = -1$ find a set of possible values for α and β .

 [Note: i and j ar orthonormal vectors, i.e. |i| = |j| = 1 and $i \cdot j = 0$].
- 9. (a) Show that $f(x) = \frac{1}{2} \cos x$, $-\infty < x < \infty$, is a periodic function, and find its range.
 - (b) $p(x) = \frac{1}{2} \cos x$ and $q(x) = \sin x$ are periodic, $0 \le x < \infty$. Prove p(x) = p(x) + q(x) is periodic.
 - (c) f(x) and g(x) are periodic. Under what conditions is F(x) a periodic function where F(x) = f(x) + g(x)?
- 10. (a) Find the general solutions of the equations in θ (1) $\sin \theta = -\frac{1}{2}$, (ii) $\sin \theta = \sin \alpha$.
 - (b) (i) Use De Moivre's theorem to express $\cos 3\theta$ as a polynomial in $\cos \theta$.
 - (ii) Prove that $cosn\theta$ can be expressed as a polynomial in $cos\theta$.