AN ROINN OIDEACHAIS

(Department of Education).

LEAVING CERTIFICATE EXAMINATION, 1957.

MATHEMATICS—Algebra—Honours.

TUESDAY, 11th JUNE .- MORNING, 10 TO 12.30.

Not more than seven questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

1. Solve the simultaneous equations

$$\begin{cases}
 x + 3y - z = 8 \\
 x - y + 3z = 4 \\
 xyz = 6
 \end{cases}$$

[35 marks.]

2. If w, w^2 are the imaginary cube roots of unity, prove that $1+w+w^2=0$, and that

$$(a+wb+w^2c)+(a+w^2b+wc)=2a-b-c.$$

Factorise fully the expression

$$(a\!+\!wb\!+\!w^2c)^3\!+\!(a\!+\!w^2b\!+\!wc)^3.$$

[35 marks.]

3. (i) Find the sum to n terms of the series

$$5.7 + 7.9 + 9.11 + \dots$$

(ii) The *n*th term of a series is $\log_2\left(\frac{n+1}{n}\right)$; express the sum of the first fifteen terms in as simple a form as you can.

[35 marks.]

4. Show that $T_{r+1}=x$. $\frac{n-r+1}{r}$. T_r , where T_r is the rth term in the binomial expansion of $(1+x)^n$ in ascending powers of x.

Give the first three terms in the binomial expansion of $(1-\frac{2}{5}x)^{-6}$ in ascending powers of x.

Find (i) the greatest coefficient, and (ii) the sum of all the coefficients to infinity, in the expansion of $(1-\frac{2}{5}x)^{-6}$.

[36 marks.]

5. (i) Show that the number of permutations of n things taken r at a time is $\frac{\lfloor n \rfloor}{\lfloor n-r \rfloor}$, and that the number of combinations is $\frac{\lfloor n \rfloor}{\lfloor r \rfloor \lfloor n-r \rfloor}$

- (ii) In how many different orders can four boys and four girls be arranged in line
 - (a) so that all the boys are together?
 - (b) so that two particular boys are not together?

 [36 marks.]
- 6. (i) Differentiate $x(1-3x)^2$ and $\frac{2x}{1-x}$ with respect to x.
 - (ii) Prove that the limit of $\frac{\sin x}{x}$ as x tends to zero is 1, and find the limit of $\frac{\sin 3x}{\sin 2x}$ as x tends to zero.
 - (iii) If $y=\sin x-x\cos x$, show that

$$x\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + xy = 0.$$

[36 marks.]

- 7. (i) Find the maximum and minimum points and the point of inflexion on the curve $y=2x^3-3x^2-36x+20$.
 - (ii) Prove that, for a given volume, a closed cylinder will have the least total surface area when its height is equal to the diameter of its base.

[36 marks.]

8. Evaluate $\int_0^1 x(1-x)dx$ and $\int_0^1 x\sqrt{1-x} dx$.

If $y=a\sin x+b\sin 2x$, where a and b are constants, prove that

$$\int_0^\pi \ y dx = -\int_\pi^{2\pi} y dx \text{ and } \int_0^{2\pi} y \cdot \sin x dx = \pi a.$$

[36 marks.]