AN ROINN OIDEACHAIS

(Department of Education).

LEAVING CERTIFICATE EXAMINATION, 1953.

MATHEMATICS-ALGEBRA-Honours.

MONDAY, 15th JUNE.-Morning, 10 to 12.30.

Not more than seven questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

- 1. Solve the simultaneous equations:
 - (i) 2yz=3(2z-5y), 5zx=3(x+2z), 6xy=7y+2x.
 - (ii) $x^{\frac{1}{6}} + y^{\frac{1}{5}} = 5$, $x^{\frac{1}{2}} + y^{\frac{3}{6}} = 35$.

[35 marks.]

2. (i) Find the value of k so that the expression

$$2x^2-7xy+6y^2+3x-4y+k$$
.

may be resolved into two linear factors. Find the factors.

(ii) Factorise

$$x^2(y^3-z^3)+y^2(z^3-x^3)+z^2(x^3-y^3).$$

[35 marks.]

3. Write down the first four terms in each of the following binomial expansions:

(i)
$$(1-x)^{-1}$$
; (ii) $(1+3x)^{\frac{1}{2}}$; (iii) $(4+x)^{-\frac{3}{2}}$.

If x is so small that its square and higher powers may be neglected, write

$$\frac{\sqrt{1+3x}}{(1-x)\sqrt{(4+x)^3}}$$

in the form a+bx, where a and b are constants.

[35 marks.]

4. (i) Find the sum of the first n terms of the series $(a+1)^2+(a+2)^2+(a+3)^2+\ldots$

(ii) Write down the nth term of the series

$$\frac{1}{3\times4} + \frac{1}{4\times5} + \frac{1}{5\times6} + \dots$$

and find the sum of the first n terms.

[36 marks.]

5. Trace the curve

$$y = (x-1)^3(x-2)$$
.

[36 marks.]

- 6. (a) Prove that as x tends to zero the limit of $\frac{\sin x}{x}$ is 1.
 - (b) Find from first principles the differential coefficient of tan x.
 - (c) Differentiate $\left(\frac{x \tan x}{1-x}\right)^2$, with respect to x.

[36 marks.]

7. A wire, of length l, is cut into two portions. The two portions are bent so that one of them forms the sides of a square and the other forms the circumference of a circle. Find the ratio between the lengths of the two portions if the sum of the areas of the square and circle is the least possible.

[36 marks.]

8. Evaluate:

(i)
$$\int_0^{\frac{\pi}{8}} \sec^2 2\theta d\theta$$
;
(ii) $\int_0^{\frac{\pi}{4}} \sin 4\theta \cos 2\theta d\theta$; [Hint: Put $y = \cos 2\theta$]
(iii) $\int_0^1 \frac{x dx}{(1+x^2)^2}$;
(iv) $\int_0^2 \sqrt{4-x^2} dx$.

[36 marks.]