AN ROINN OIDEACHAIS

(Department of Education).

LEAVING CERTIFICATE EXAMINATION, 1952

MATHEMATICS-Algebra-Honours.

TUESDAY, 17th JUNE.-Morning, 10 to 12.30.

Not more than six questions may be answered.

Mathematical Tables may be obtained from the Superintendent

1. If $x^2+y^2+z^2=9$ and xy+yz+zx=-4, find the value of x+y+z. Solve the simultaneous equations

$$x^{2}+y^{2}+z^{2}=9,$$

 $xy+yz+zx=-4,$
 $2x-y+3z=1.$

[40 marks.]

2. Prove that the sum of the squares of the first n natural numbers is $\frac{1}{n}n(n+1)(2n+1)$.

Find the sum of the first n terms of the series:

- (i) $1^2+3^2+5^2+\ldots$
- (ii) 2.3+3.4+4.5+.....

[40 marks.]

3. Use the binomial expansion of $\left(1 - \frac{1}{50}\right)^{-\frac{1}{2}}$ to find the value of $\sqrt{2}$ correct to four places of decimals.

Use the Binomial Theorem to find the value of $\sqrt{10}$ correct to four places of decimals.

[40 marks.]

- 4. How many groups of 5 books can be made from 6 Irish books and 8 English books
 - (i) if each group is to contain one and only one Irish book,
 - (ii) if each group is to contain at least one Irish book,
 - (iii) if not more than one of a particular pair of books may be selected for the same group?

[42 marks.]

5. If α , β , γ , are the roots of the equation $x^3-3x-4=0$, find the two corresponding equations whose roots are (i) $\alpha-2$, $\beta-2$, $\gamma-2$,

and (ii) 10α , 10β , 10γ , respectively.

Show that the equation $x^3-3x-4=0$ has a root lying between 2.1 and 2.2, and find the value of that root, correct to three places of decimals.

[42 marks.]

6. Differentiate from first principles (i) \dot{x}^3 , (ii) $\cos 2x$, with respect to x.

Differentiate with respect to x:

(i) xtan3x, (ii) xsin2xtan3x.

[42 marks.]

7. Find the points on the curve $y^2=(x-1)(x-2)^2$ at which the tangent is parallel to the x-axis, and sketch the curve. Find the volume generated by rotating the loop about the x—axis.

[42 marks.]

OR

7. Find the altitude of the cylinder of maximum volume that can be inscribed in a given right circular cone of height h. [42 marks.]

8. Evaluate:

(i)
$$\int_{1}^{2} x(x+1)^{2} dx$$
;

(ii)
$$\int_0^{\pi} \sin^2 x \ dx \; ;$$

(iii)
$$\int_0^1 \frac{2x}{\sqrt{1+x^2}} dx$$
;

$${\rm (iv)}\; \int_0^{\frac{a}{2}} \frac{dx}{\sqrt{a^2-x^2}} \cdot$$

[42 marks.]