AN ROINN OIDEACHAIS

(Department of Education).

LEAVING CERTIFICATE EXAMINATION, 1949.

MATHEMATICS—Geometry—Honours.

THURSDAY, 9th JUNE.-Morning, 10 to 12.30.

Six questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

1. If D, E, F are points on the sides BC, CA, AB respectively of a triangle ABC such that

 $\frac{\mathrm{BD}}{\mathrm{DC}} \cdot \frac{\mathrm{CE}}{\mathrm{EA}} \cdot \frac{\mathrm{AF}}{\mathrm{FB}} = 1,$

prove that AD, BE, CF are concurrent.

Find a point O in the plane of a triangle ABC such that

 $\triangle AOB : \triangle BOC : \triangle COA = p : q : r$

where p, q, r are given constants. How many solutions are there? [40 marks.]

2. If A, B, C, D is a harmonic range and O is the middle point of AC, prove that OC²=OB.OD.

Two circles intersect at A, B; a common tangent touches them at P, Q and cuts any other circle through A, B at L, M. Prove that PQ is divided harmonically at L, M.

[40 marks.]

3. Show that the inverse of a circle with respect to a point not on its circumference is another circle.

Show also that a circle, its inverse and the circle of inversion are coaxal with one another.

[40 marks.]

4. Show that the angle between the straight lines

$$y = m_1 x + c_1$$
, $y = m_2 x + c_2$ is $\tan^{-1} \frac{m_1 - m_2}{1 + m_1 m_2}$.

Find the equations of the sides of a square given that the co-ordinates of a pair of opposite vertices are (0, 0) and (1, 2).

[42 marks.]

5. Find the equations of the circles which pass through the points (-1, 1); (-4, 4) and touch the straight line x-y=0.

- 2001 N

5. Show that the circle described on the common chord of the circles $x^2+y^2+2x+8y-4=0$ and $x^2+y^2-x+2y-1=0$ as diameter passes through the origin. [42 marks.]

- 6. Find the equation of the parabola whose focus is (2, -3) and vertex (-1, 0).
 - 7. Prove that
 - (i) sin2A+sin2B+sin2C=4sinAsinBsinC,
 - (ii) acosA+bcosB+ccosC=4RsinAsinBsinC,

where A, B, C are the angles of a triangle and R is the radius of the circumcircle.

[42 marks.]

Or,

7. In a triangle ABC, $\cos A = -\frac{5}{13}$, b = 13, c = 4: find R, r, r_1 , r_2 , r_3 , where these quantities have the usual meanings.

[42 marks.]

8. (a) Solve the equations:

(i)
$$\tan^{-1} \frac{x}{1+x} + \tan^{-1} \frac{x}{1-x} = \tan^{-1} 2$$
,

(ii)
$$\cos^{-1} \frac{x^{!}-1}{x^{2}+1} = \frac{2\pi}{3} - \tan^{-1} \frac{2x}{x^{2}-1}$$
.

(b) Find the general solution of the equation $6\sin\theta + 13\cos\theta = 14$. [42 marks.]