AN ROINN OIDEACHAIS

(Department of Education.)

LEAVING CERTIFICATE EXAMINATION, 1944.

MATHEMATICS—Geometry—Honours.

TUESDAY, 13th JUNE.—AFTERNOON 3 TO 5.30.

Seven questions to be attempted and not more than five from Section A.

All questions carry equal marks.

Mathematical Tables may be obtained from the Superintendent.

SECTION A.

1. A straight line cuts the sides BC, CA, AB of a triangle ABC in L, M, N respectively; using a certain convention of signs, prove that

 $\frac{\mathrm{BL}}{\mathrm{LC}} \cdot \frac{\mathrm{CM}}{\mathrm{MA}} \cdot \frac{\mathrm{AN}}{\mathrm{NB}} = -1.$

If A is joined to the intersection of BM and CN and the joining line meets BC at D, prove that L and D are harmonic conjugates with respect to B and C.

2. If a straight line is drawn through any point to cut a circle, prove that the line is cut harmonically by the circle, the point and the polar of the point.

Two tangents are drawn from a point P on the polar of a point Q; prove that the two tangents from P, the polar of Q and the line PQ form a harmonic pencil.

3. Prove that the angle between any two curves is equal to the angle between their inverses.

Prove that a coaxal system of non-intersecting circles can be inverted into a system of concentric circles by taking one of the limiting points as centre of inversion.

[Hint. Use: Any circle passing through the limiting points of a coaxal system cuts every circle of the system orthogonally.]

4. Find the coordinates of the centroid and of the orthocentre of the triangle whose sides are

$$2x-y+2=0$$
, $3x+y-3=0$, $y+1=0$.

5. Prove that the circles

 $x^{2}+y^{2}+2gx+2fy+c=0$, $x^{2}+y^{2}+2g'x+2f'y+c'=0$ cut orthogonally if 2(gg'+ff')=c+c'.

[Use: $r^2+r_1^2=d^2$, where r, r_1 are the radii of the circles and d is the distance between their centres.]

Find the equation of the circle passing through the points (1, 1), (2, 3) and cutting orthogonally the circle $x^2+y^2-8x-2y+16=0$.

6. If $S = x^2 + y^2 - a^2$, $L = x\cos a + y\sin a - p$, interpret the equation $S + \lambda L = 0$, where λ is a constant.

S=0 cuts L=0 in the points A, B and a circle is described on AB as diameter. Prove that its equation is S=2pL=0.

SECTION B.

7. Defining a parabola by its focus-directrix property, prove that its equation can be got in the form $y^2=4ax$.

P is any point on a parabola whose focus is F; PM is the perpendicular on the directrix and T is the point where the tangent at P meets the axis of the parabola; PN is the perpendicular from P on the axis of the parabola, and G is the point where the normal at P meets the axis. Prove that

- (i) NG is constant for all positions of P, on the parabola,
- (ii) FT=FP,
- (iii) PT bisects the angle MPF.
- 8. (a) With the usual notation for a triangle ABC, prove that
 - (i) $r=4R\sin\frac{1}{2}A\sin\frac{1}{2}B\sin\frac{1}{2}C$,
 - (ii) $s=4R\cos{\frac{1}{2}}A\cos{\frac{1}{2}}B\cos{\frac{1}{2}}C$.
- (b) Show that the triangle ABC is right angled when $r_1 = r + r_2 + r_3$.
- 9. Show how to express the equation $a\cos\theta + b\sin\theta = 0$ as a quadratic in t, where $t = \tan\frac{1}{2}\theta$.

If α , β , whose difference is not a multiple of 2π , are roots of the equation in θ

 $a\cos\theta + b\sin\theta = e$,

prove that

$$\tan^{\frac{1}{2}(\alpha+\beta)=b/a.}$$

Hence, or otherwise, show that

(i)
$$\cos(a+\beta) = \frac{a^2-b^2}{a^2+b^2}$$
,

(ii)
$$\sin(\alpha+\beta) = \frac{2ab}{a^2+b^2}$$

 (a) Find general solutions of the equation, sin4θ—sin2θ=cos3θ.

(b) Find the ranges of values of θ for which the equation in $x + 1/x = 4\cos\theta$

has real roots.