AN ROINN OIDEACHAIS

(Department of Education).

LEAVING CERTIFICATE EXAMINATION, 1943.

MATHEMATICS-Algebra-Honours.

WEDNESDAY, 9th JUNE.-Morning, 10 to 12.30.

Six questions may be answered, of which not more than three may be taken from Section B.

Mathematical Tables may be obtained from the Superintendent.

SECTION A.

1. Solve the equations:

$$x^2y+xy^2+x+y=3$$

2(x-1)(y-1)+1=0.

[40 marks.]

2. (i) Factorise

$$(x+y+z)^5-x^5-y^5-z^5$$

(ii) From the factors of

$$x^2(y-z)+y^2(z-x)+z^2(x-y)$$

deduce, by making suitable substitutions for x, y and z, the factors of (b-c) $(b+c-2a)^2+(c-a)$ $(c+a-2b)^2+(a-b)$ $(a+b-2c)^2$.

[40 marks.]

3. The natural numbers are divided into groups thus:

$$1 + (2 + 3 + 4) + (5 + 6 + 7 + 8 + 9) + (10 + 11 + 12 + 13 + 14 + 15 + 16)$$

Find the total of the numbers in the first n groups and the sum of the numbers in the nth group.

[40 marks.]

4. Two families each consist of 5 brothers and 5 sisters. In how many different ways may a party of 8 persons, consisting of 4 men and 4 women, be made up from these families if four members of each family are to be included?

[40 marks.]

5. If a=b(1+x), where x is a small quantity, expand $\sqrt{(a/b)}$ and a/(a+b) in ascending powers of x as far as the term containing x^4 . Show that, neglecting the fourth and higher powers of x,

$$\sqrt{\frac{a}{b}} = \frac{a}{a+b} + \frac{1}{4} \frac{a+b}{b}.$$

[42 marks.]

6. (i) If a, b, c and d are real numbers and $i=\sqrt{-1}$, show that the condition that the equation

$$z^2 + (a+ib)z + (c+id) = 0$$

may have one real root is $d^2+b^2c=abd$.

(ii) If $z=1-i\sqrt{3}$, where $i=\sqrt{-1}$, express

$$z(2-z), z^{-1}, z^{\frac{1}{2}}$$

in the form x+iy, x and y being real numbers, positive or negative.

[42 marks.]

SECTION B.

7. Differentiate with respect to x the functions:

(i)
$$\frac{1-x^2}{1+x+x^2}$$
; (ii) $\sin 2x + \cos^2 x$.

If $y=x^{-1}$ sin x show that

$$x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + xy = 0.$$

[42 marks.]

8. An open rectangular tank is to have a volume of 3,888 cubic feet and the edges of the base are to be in the ratio 3:1. Show that the cost of lining it with lead is least when its depth is 9 feet.

[42 marks.]

9. Evaluate

(i)
$$\int_0^1 \frac{x \ dx}{(1+x^2)^3}$$
; (ii) $\int_0^{\frac{\pi}{4}} \tan^2 x \ dx$;

(iii)
$$\int_{0}^{\pi} \sin^3 x \cos^2 x \ dx.$$

[42 marks.]

10. Find the area enclosed by the curves

$$2y = x^3$$
 and $y^2 = 8x$.

Find, also, the volume generated by revolving this area round the x—axis.

[42 marks.]

11. Trace the curve

$$y^2 = x(x-3)^2$$
.

Show that the curve lies entirely on one side of one of the axes and that it is symmetrical with respect to the other axis. Where are its turning points?

[42 marks.]