AN ROINN OIDEACHAIS

(Department of Education.)

BRAINNSE AN MHEADHON-OIDEACHAIS (Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1941.

HONOURS.

MATHEMATICS

(GEOMETRY)

MONDAY, 16th JUNE.—MORNING, 10 A.M. TO 12.30 P.M.

Six questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

1. If X, Y, Z are points on the sides BC, CA, AB respectively of a triangle such that AX, BY, CZ are concurrent, prove that

$$\frac{BX}{CX} \cdot \frac{CY}{AY} \cdot \frac{AZ}{BZ} = -1.$$

Prove also that if YZ meets BC in X', then {BC, XX'} is a harmonic range.

[40 marks.]

2. Prove that, if a straight line is drawn through any point to cut a circle, the line is divided harmonically by the circle, the point and the polar of the point with respect to the circle.

[40 marks]

3. Prove that the inverse of a circle with respect to a point not on its circumference is another circle. Show also that the centre of inversion is a centre of similitude of the two circles.

[40 marks.]

4. Solve the equations

(i)
$$\frac{1}{2} \tan^{-1} x = \cot^{-1} \frac{x}{2}$$
;

(ii)
$$\tan^{-1}(x+1) = 3\tan^{-1}(x-1)$$
.

[40 marks.]

5. If α , β are the roots of the equation

$$a\cos x + b\sin x = c$$
,

prove that $\sin \alpha + \sin \beta = \frac{2bc}{a^2 + b^2}$

and that $\cos a + \cos \beta = \frac{2ac}{a^2 + b^2}$

[40 marks.]

6. If D, E, F are the feet of the perpendiculars drawn from the vertices of an acute-angled triangle ABC to the opposite sides, prove that the sides of the triangle DEF are equal to $a\cos A$, $b\cos B$, $c\cos C$ respectively and that the angles are equal to $\pi-2A$, $\pi-2B$, $\pi-2C$ respectively. Prove also that the radius of the circumcircle of ABC is twice the radius of the circumcircle of DEF.

[42 marks.]

7. The co-ordinates of the vertices of a triangle are (1, 0); (-1, 2); $(-2, -\frac{1}{2})$. Find the co-ordinates of the orthocentre.

[42 marks.]

8. Find the equation of the inscribed circle of the triangle formed by the straight lines whose equations are

$$3x+4y-4=0,$$

 $12x-5y+5=0,$
 $y=0.$

[42 marks.]

9. Find the equation of the straight line which lies midway between the parallel straight lines x-2y+1=0 and x-2y-4=0.

Find also the equations of the two circles through the origin which touch both the given straight lines.

[42 marks.]

10. Show that the equation of any tangent to the parabola $y^2=4x$ can be put in the form $x-ay+a^2=0$.

Hence show that two tangents can be drawn to the parabola from the point (x_1, y_1) , when $y_1^2-4x_1$ is positive.

Find the equation of each of the two tangents that

can be drawn from the point (6, 5).

[42 marks.]