AN ROINN OIDEACHAIS

(Department of Education).

BRAINNSE AN MHEADHON-OIDEACHAIS (Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1941.

HONOURS.

MATHEMATICS

(Algebra).

TUESDAY, 17th JUNE.—AFTERNOON, 3 TO 5.30 P.M.

Six questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

1. Solve the equations

$$x^2-5x(y+9)+2(y+9)^2=2$$
,
 $x^2+x(y+9)-10(y+9)^2=20$.

[40 marks.]

2. (i) If x+y+z=0, prove that $x^4+y^4+z^4=2(x^2y^2+y^2z^2+z^2x^2)$.

(ii) Factorise
$$a^2(a-1)(b-c)+b^2(b-1)(c-a)+c^2(c-1)(a-b)$$
 [40 marks.]

- 3. (i) Find the sum of n terms of $(n+1)^2+(n+2)^2+(n+3)^2+\dots$
 - (ii) If $f(n) = \frac{1}{n^2}$, show that

$$f(n)-f(n+1) = \frac{2n+1}{n^2(n+1)^2}$$

Hence find the sum of n terms of

$$\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \dots$$

[40 marks.]

4. In a pack of cards there are 52 different cards made up of 4 suits of 13 cards each. In how many ways can 3 cards be selected from the pack? In how many of these ways will the three cards be (i) all of the same suit, (ii) all of different suits?

[40 marks.]

5. Find the greatest root of the equation $2x^3 - 4x + 1 = 0,$

correct to 2 decimal places.

[40 marks.]

6 Expand $(1+\frac{4}{5}x)^{12}$ by the Binomial Theorem. Find (i) the value of the greatest coefficient, (ii) the value of the greatest term when $x=\frac{2}{3}$.

[42 marks.]

7. (a) Prove from first principles that $\frac{d}{dx}(x\sin x) = \sin x + x\cos x.$

(b) Differentiate (i) $\frac{3x-2}{2x+3}$; (ii) $\tan^2(5x+1)$. [42 marks.]

8. Find the value of

(i) $\int_{0}^{1} (3-2x)^{3} dx$; (ii) $\int_{0}^{\pi} \tan^{2}\theta d\theta$.

Use the Tables to find, to three decimal places, the value of $\int_{-\pi}^{\pi} \sin(2-x)dx$.

[42 marks.]

9. Find the least area (to the nearest square foot) of canvas that can be used to construct a conical tent whose capacity is 1,000 cubic feet. [42 marks.]

10. Trace the curve

 $y=(x-1)^3(x-2)-1$

twing particular attention to the part lying between the x=1, and x=2.

Mention where points of inflexion occur, and where y aches its minimum value. [42 marks.]