AN ROINN OIDEACHAIS

(Department of Education.)

BRAINNSE AN MHEADHON-OIDEACHAIS (Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1940.

HONOURS.

MATHEMATICS

(Algebra).

TUESDAY, 18th JUNE.—AFTERNOON, 3 TO 5.30 P.M.

Six questions may be answered.

Mathematical Tables may be obtained from the Superintendent.

1. Solve the equations

(a)
$$x^2 - xy + 3y^2 = 15$$
,
 $x^2 + xy - y^2 = 5$.

(b)
$$\sqrt[3]{5x-2} - \sqrt[3]{x+6} = \sqrt[3]{x-2}$$
.

[40 marks.]

2. Factorise

(i)
$$(b-c)^3(a-x)^3+(c-a)^3(b-x)^3+(a-b)^3(c-x)^3$$
;
(ii) $a^3(b-c)+b^3(c-a)+c^3(a-b)$.

[40 marks.]

3. Write down the first four terms in the expansion of $\left(1-\frac{1}{50}\right)^{\frac{1}{2}}$ and hence find the value of $\sqrt{2}$, correct to 6 decimal places. Show that 4 terms are sufficient for the purpose. [40 marks.]

- 4. Find the sum of n terms of
 - (i) $1+3x+5x^2+7x^3+\ldots$
 - (ii) $2.5 + 5.8 + 8.11 + 11.14 + \dots$

[40 marks.]

5. In how many different ways can the letters of the word *infinitesimal* be arranged? In how many of these arrangements will the four *i*'s come together? In how many will no two of the *i*'s come together?

[40 marks.]

- 6. Differentiate—
 - (i) $(1+3x^2)^2$; (ii) $x\sqrt{1+3x^2}$; (iii) $x\sin x\cos x$.

Show that the differential coefficient of $\sin nx \sin^n x$ with respect to x is equal to $n\sin^{n-1}x\sin(n+1)x$.

[42 marks.]

7. Find the altitude of the cone of maximum volume which can be inscribed in a sphere of radius r.

[42 marks.]

- 8. Find the value of
 - (i) $\int_0^1 x^2 (1+3x) dx$; (ii) $\int_0^1 \frac{x^2 dx}{(1+x^3)^2}$;
 - (iii) $\int_0^{\frac{\pi}{2}} \sin^2\theta d\theta$; (iv) $\int_0^{\frac{\pi}{4}} \sin^2\theta \cos^2\theta d\theta$. [42 marks.]
- 9. Find the area enclosed by the parabolas $y^2=kx$ and $x^2=ky$. Find also the volume generated by the revolution of this area about one of the axes.

[42 marks.]

10. Find the limits to the value of the function (2x-1)(2x-3) when x is real.

Draw a rough graph of the function, paying special attention to the maximum and minimum points and to the infinite branches.

[42 marks.]