AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEÁN-OIDEACHAIS

(Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1929.

HONOURS

MATHEMATICS (II).

TUESDAY, 18th JUNE.-AFTERNOON, 3.30 TO 6 P.M.

Six questions may be answered. Question 6 (a) or 6 (b) may be answered, but not both. All questions carry equal marks.

Mathematical Tables may be obtained from the Superintendent.

1. Illustrate geometrically the meaning of the derivative of a function.

A quadratic function of x becomes equal to -5 when x=3 and the tangents to its curve at x=-1 and x=2 make angles $\tan^{-1} 7$ and $\tan^{-1} -5$ respectively with the positive direction of the x-axis. Find the value of the function at its turning point.

- 2. Find from first principles the derivatives of $\frac{1}{x^2+1}$ and of sec x. If $y = \sec^{-1} \frac{x^2+1}{x^2-1}$, find $\frac{dy}{dx}$ in its simplest form.
- 3. A conical tent is to have a given volume, V. Find what is the ratio of its height to its base radius when the least possible amount of canvas is used.
- 4. Make a rough sketch of the graph of the function $x^4-a^2x^2+a^2y^2=0$, and calculate the volume of the solid generated by rotating round the x-axis the area enclosed by the curve.

5. Find θ from the relation

$$\tan^{\text{--}1}\!\theta = \tan^{\text{--}1}\!\frac{1}{8} + \tan^{\text{--}1}\!\frac{1}{7} + \tan^{\text{--}1}\!\frac{1}{5} + \tan^{\text{--}1}\!\frac{1}{3}\,,$$

and solve the equation

$$\tan^{-1}\frac{x}{a} + \tan^{-1}\frac{x}{b} + \tan^{-1}\frac{x}{c} = \frac{\pi}{2}$$
.

6 (a). The angle in a segment cut off from a circle by a chord AB, of length a, is φ . A tangent PQ meets BA, produced, in P and the perpendicular through B to the chord AB in Q. If \angle BPQ = θ , find the simplest expression for PQ in terms of a, θ and φ .

Or

- 6 (b). With the usual notation for a triangle and its circles prove that the area of the triangle $I_1I_2I_3 = 8R^2\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$.
- 7. Show that the sum of the rectangles contained by the opposite sides of a cyclic quadrilateral is equal to the rectangle contained by the diagonals.

P is a point on the circumcircle of an equilateral triangle ABC: prove that one of the lines PA, PB, PC is equal to the sum of the other two.

- 8. D and E are points on the sides AB and AC respectively of the triangle ABC such that AD: DB = m:n, and AE: EC = p:q. BE and CD intersect at O. Prove that the triangle AOC: triangle BOC = m:n and express the ratios BO: OE and CO: OD in terms of m, n, p, q.
- 9. O is a fixed point and OP_1P_2 is any secant through O intersecting a fixed circle in P_1 and P_2 . Q is a point on P_1P_2 such that OQ is equal to (i) the arithmetic, (ii) the geometric, and (iii) the harmonic mean between OP_1 and OP_2 ; in each case determine geometrically or analytically the locus of Q.