AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEAN-OIDEACHAIS

(Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1929.

HONOURS

MATHEMATICS (I).

THURSDAY, 13th JUNE .- 10 A.M. TO 12.30 P.M.

Six questions may be answered.

All questions carry equal marks.

Mathematical Tables may be obtained from the Superintendent.

- 1. (a) If $(a+b)^2 = 4x^2ab$, $(b+c)^2 = 4y^2bc$, and $(c+a)^2 = 4z^2ca$, prove that $x^2+y^2+z^2=1\pm 2xyz$.
 - (b) Factorise $6x^2 5xy 6y^2 + 7x + 22y 20$.
 - 2. Solve the equations:

(i)
$$\sqrt{1-x+x^2} - \sqrt{1+x+x^2} = a$$
.

(ii)
$$x + y + z = 1$$

 $x^2 + y^2 + z^2 = 21$
 $xyz = 8$

- 3. (i) Find the sum of the squares of the first n natural numbers
- (ii) Find the nth term of a series whose initial terms are the same as 1, 2, 4, 7, 11, 16, 22 . . . and sum your series to n terms.
 - 4. Find the term independent of x in the expansion of

$$(1+x)^5\times\left(1+\frac{1}{x}\right)^5.$$

If
$$(1+x)^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$
, prove that
$$c_0^2 + c_1^2 + c_2^2 + \dots + c_n^2 = \frac{(2n)!}{n! \ n!}$$

- 5. Calculate to four significant figures the real root of the equation $x^3 5x^2 + 9x 8 = 0$.
- 6. Find the co-ordinates of the points dividing in a given ratio the line joining two given points.

A straight line is such that its intercept between the x and y axes is divided in the ratio m:n at a given point (a, b); find the equation of the line.

7. Derive an expression for the length of the perpendicular from the point $(x_1 y_1)$ to the line Ax + By + C = 0.

Determine, without drawing a figure, whether the points (-8, 10) and (0, 0) are on the same or on opposite sides of the line 13x - 16y + 208 = 0. Similarly show whether the point (-8, 10) lies within or without the circle

$$x^2+y^2+10x-14y+58=0.$$

8. (x_1, y_1) and (x_2, y_2) are the extremities of the diameter of a circle. Obtain equations to the straight lines joining each of these points to the point (ξ, η) on the circle and show that the equation to the circle is $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$:

Find the equation of the circle having as diameter the chord intercepted on the line x+3y=35 by the circle $x^2+y^2=125$.

9. Define a parabola and obtain its equation in the form $y^2 = 4ax$.

From a point P $(at^2, 2at)$ on the parabola $y^2 = 4ax$ a normal is drawn intersecting the x- axis in Q. Show that the mid-point of PQ describes a parabola as P moves on $y^2 = 4ax$.