AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEAN-OIDEACHAIS
(Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1927.

HONOURS

MATHEMATICS (II).

TUESDAY, 21st JUNE.—Afternoon, 3.30 to 6 P.M.

Six questions may be answered. 5 (a) or 5 (b) may be attempted, but not both. All questions carry equal marks.

Tables of Measures, Constants and Formulae and Logarithmic Tables may be obtained from the Superintendent.

1. If u and v are functions of x, find the derivative of uv in terms of the derivatives of u and v.

If
$$(1+x^2)$$
 sin $y=2x$, show that $\frac{dy}{dx}=\pm\,\frac{2}{1+x^2}.$

- 2. Find the maximum and minimum values of the function $x^3 3x$. Draw a rough diagram of the curve $y = x^3 3x$.
- 3. If the curves $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{c^2} + \frac{y^2}{d^2} = 1$ intersect at right angles, show that $a^2 b^2 = c^2 d^2$.
- 4. Find the area between the parallels x = 0 and x = b bounded by the curve $y^2 = 4ax$ and the x-axis. If this area is made to revolve about the x-axis, find the volume generated.

5. (a) Give the Argand method of representing geometrically the quantity a + ib where $i = \sqrt{-1}$. What represents the modulus of the quantity?

What complex quantity would be represented by the centroid of a triangle having vertices a + i b, $a_1 + i b_1$ and $a_2 + i b_2$?

Or

(b) I_1, I_2, I_3 are the centres of the escribed circles of the triangle ABC. Show that I_1 BC, I_2 CA, I_3 AB are similar triangles whose areas are as $\sin^2\frac{A}{2}$: $\sin^2\frac{B}{2}$: $\sin^2\frac{C}{2}$.

6.
$$\sin^{-1} P + \sin^{-1} Q = \sin^{-1} R$$
,
where $P = \frac{2ab}{a^2 + b^2}$ and $Q = \frac{2cd}{c^2 + d^2}$.

Find the value of R in terms of a, b, c, d in the form $\frac{2AB}{A^3+B^2}.$

Show that
$$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{5}{13} = \sin^{-1}\frac{56}{65}$$
.

7. A and B are two points in a line with the centre O of a circle and such that OA.OB=square on the radius of the circle. Show that any circle passing through A and B will cut the given circle orthogonally.

Find the locus of the centre of a circle which cuts two given non-intersecting circles orthogonally.

8. P is the mid-point of the arc AB of a circle and D any other point on the circle. Show that PC. PD=PB² where C is the intersection of the lines AB and PD.

Given the base, vertical angle and the length of the bisector (from the vertex to the base) of the vertical angle of a triangle, show how to construct the triangle.