AN ROINN OIDEACHAIS

(Department of Education).

PRAINSE AN MHEAN-OIDEACHAIS
(Secondary Education Branch).

LEAVING CERTIFICATE EXAMINATION, 1926.

HONOURS

MATHEMATICS (II).

MONDAY, 21st JUNE. -AFTERNOON, 3.30 TO 6 P.M.

Six questions may be answered. All questions carry equal marks.

Tables of Measures, Constants and Formulae and Logarithmic Tables may be obtained from the Superintendent.

- 1. Find from first principles the derivative of $\cos x$. If $y = a \cos x + b \sin x + c$ and y', y'' are the first and second derivatives of y with respect to x, show that y + y'' = c and $y'^2 + y''^2 = a^2 + b^2$.
- 2. If y = f(x), what conclusions can you draw with regard to f(x) when $\frac{dy}{dx}$ is (i) positive (ii) negative (iii) zero?

An open rectangular box is to be made from a rectangular piece of cardboard of sides 10 ins. and 6 ins. by cutting four equal squares from the corners and folding up at the sides. Find the maximum volume of the box.

- 3. Show that the tangent to the curve $y=x^2-x+\frac{1}{2}$ at the point where x=1 and the tangent to the curve $y=x^2-2$ x+3 at the point where x=2 intersect on the x-axis. Calculate the angle between these tangents.
- 4. Make a rough diagram showing the graphs $y = 3x^2$ and y + 2x = 1. Find the area external to the parabola and bounded by the parabola, the straight line and the x-axis.

5. D is a point in BC of triangle ABC, AD the bisector of angle A and I the in-centre of the triangle. If $AI = 1 \cdot 684 \cdot ID$ and $A = 47^{\circ}40'$, find angles B and C.

6. If $\sin 5x = \sin 3x$ show that $x = n \pi$ or $\frac{2n+1}{8}\pi$, where n is an integer.

Hence find the values of $\sin \frac{\pi}{8}$, $\sin \frac{3\pi}{8}$.

- 7. The sides BA, CD of a quadrilateral circumscribed about a circle of centre O meet at E. POQ is perpendicular to OE and meets AB in P and CD in Q. Show that PB·QC=OP² and that P,Q divide AB and CD in equal inverse ratios.
- 8. Define "radical axis" of two circles and state how it divides the line of centres of the two circles.

A variable circle touches two fixed circles: show that its radius bears a constant ratio to the distance of its centre from their radical axis.