AN ROINN OIDEACHAIS AGUS EOLAÍOCHTA

LEAVING CERTIFICATE EXAMINATION, 1999

16797

MATHEMATICS - FOUNDATION LEVEL

PAPER 2 (300 marks)

FRIDAY, 11 JUNE - MORNING, 9.30 - 12.00

Attempt SIX QUESTIONS (50 marks each).

Marks may be lost if necessary work is not clearly shown. A sheet of formulae will be given to you by the Superintendent.

1. (a) A rectangular block has volume 720 cm³. The width and length of the block are 9 cm and 20 cm, respectively. Its height is h cm.

Calculate

- (i) the value of h
- (ii) the sum of the areas of the four vertical sides.

(b) The front face of a stone wall of a ruined castle is shown in the diagram.

All distances are measured in metres. The heights are measured at intervals of 2.4 m along the base line.

Use Simpson's Rule to calculate the area of the front face of the stone wall.

2. (a) The volume of a right circular cone is $14\ 130\ cm^3$. The height of the cone is $20\ cm$. Find the length of its base radius correct to one place of decimals.

Take $\pi = 3.14$.

TETE!

- 1 ake $\pi = 3.14$.
- (b) A mirror has the shape of a rectangle with semi-circular top. The rectangular section has width 0.6 m and height 1.2 m.

 The semi-circular part has radius length 0.2 m.

Find

- (i) the area of the rectangular section
- (ii) the area of the semi-circular part, taking $\pi = 3.14$
- (iii) the total area
- (iv) the length of the perimeter of the mirror, taking $\pi = 3.14$.

3. (a) The diagram shows a triangle.

Find the value of x and the value of y.

(b) The diagram shows a parallelogram.

Find the value of

- (i) p
- (ii) q
- (iii) r
- (iv) s.

(c) A circle, centre o, is drawn around the triangle abc so as to touch the points a, b and c.

[ab] is a diameter of the circle.

- (i) Write down the measure of $\angle acb$.
- (ii) Name two isosceles triangles.
- (iii) Given that the radius length is 6.5 cm and |ac| = 12 cm, calculate |cb|.

4. (a) p(5, 4) and q(-3, -2) are points.

Find the co-ordinates of the midpoint of [pq].

- (b) r is the point (1, 2) and s is the point (-2, 6).
 - (i) Plot the points r and s on graph paper.
 - (ii) Find the length of [rs].
 - (iii) Find the slope of rs.
- (c) The line L has equation y = 2x + 3.

The point k has co-ordinates (0, 3).

- (i) Show that k lies on the line L.
- (ii) Write down the value of the slope of L.
- (iii) Find the equation of the line which passes through k and is perpendicular to L.
- 5. (a) Given that $\sin A = \frac{4}{5}$, write down the value of
 - (i) cos A
 - (ii) tan A
 - (iii) sin B.

(b) Find cos P and write your answer as a decimal.

Hence find the measure of the angle P, correct to the nearest degree.

(c) The angle of elevation of the top of a television mast from a point on the level ground 140 m from the foot of the mast is 20°.

Find the height h of the mast, correct to two places of decimals.

. (a) A pupil must choose one subject out of each of the following subject groups:

Group A has 3 modern language subjects Group B has 2 science subjects Group C has 2 business subjects.

How many different subject selections are possible?

(b) A bag contains 8 red balls, 7 yellow balls and 5 white balls. A ball is picked at random from the bag.

What is the probability that

- (i) the ball is yellow
- (ii) the ball is <u>not</u> red?
- (c) The number of houses of various types in an estate of 80 houses is shown in the table.

House type	Two-bedroomed	Three-bedroomed	Four-bedroomed
Detached	0	9	5
Semi-detached	0	24	12
Terraced	10	20	0

For example, there are 24 three-bedroomed semi-detached houses in the estate.

A house is selected at random.

What is the probability that it is

- (i) a four-bedroomed detached house
- (ii) a semi-detached house
- (iii) a terraced house
- (iv) a three-bedroomed or four-bedroomed house?

7. (a) The time spent studying by each of 60 students was recorded on one day and the results are shown in the following table:

Study time (in minutes)	0 - 50	50 - 100	100 - 150	150 - 200	200 - 250
Number of students	8	14	17	13	8

[Note: 50 - 100 means 50 minutes or more but less than 100 minutes studying.]

Copy and complete the following cumulative frequency table:

Study time (in minutes)	<50	<100	<150	<200	<250
Number of students		•			

Draw the cumulative frequency curve. Put the number of students on the vertical axis.

Use this curve to estimate

- (i) the median study time
- (ii) the number of students who spent 90 minutes or more but less than 180 minutes studying.
- (b) Find the mean and calculate the standard deviation of the numbers

2, 6, 10, 14

correct to two places of decimals.

- 8. (a) Show how to draw the tangent to a circle at a given point on the circle.
 - (b) The right-angled triangle p' q' r' is the enlargement of the right-angled triangle pqr. The centre of enlargement is o. |rp| = 4, |r'p'| = 8 and |p'q'| = 6.4.

- (i) Calculate the scale factor of the enlargement.
- (ii) Find the length of [pq].
- (iii) Find the area of triangle pqr.
- (c) Construct a rectangle abcd with |ab| = 2.5 cm and |bc| = 1.5 cm.

Construct the image of the rectangle abcd under the enlargement with centre a and scale factor 2.4 .

Calculate the area enclosed by the image.

AN ROINN OIDEACHAIS

SCRÚDÚ NA hARDTEISTIMÉIREACHTA LEAVING CERTIFICATE EXAMINATION

15690

MATAMAITIC - BONNLEIBHÉAL MATHEMATICS - FOUNDATION LEVEL

FOIRMLÍ LE hAGHAIDH PÁIPÉIR 2 FORMULAE FOR PAPER 2

71475	Y TINI CHIYY
FAD	LENGTH
	2221022

FAD	FORMLÍ	TRIANTÁN TRIANGLE	LENGTH	FORMULAE
	a = Fad - b - c			a = Length - b - c
Fad = a + b + c	b = Fad - a - c	c b	Length = $a + b + c$	b = Length - a - c
	c = Fad - a - b	<u> </u>		c = Length - a - b

Fad = 2(a + b)	FOIRMLÍ $a = \frac{(Fad - 2b)}{2}$ $b = \frac{(Fad - 2a)}{2}$		FORMULAE $a = \frac{(\text{Length} - 2b)}{2}$ $b = \frac{(\text{Length} - 2a)}{2}$
	$b = \frac{(Fau - Za)}{2}$	a	$b = \frac{(Lengur - 2a)}{2}$

FAD	FOIRMLÍ	CEARNÓG	SQUARE	LENGTH	FORMULAE
Fad = 4a	$a = \frac{Fad}{4}$	a		Length = 4a	$a = \frac{\text{Length}}{4}$

FAD Fad = $2\pi r$ Fad = πd	$d = 2r$, $r = \frac{d}{2}$ $r = \frac{Fad}{2\pi}$ Fad	CIORCAL	LENGTH Length = $2\pi r$ Length = πd	FORMULAE $d = 2r, r = \frac{d}{2}$ $r = \frac{\text{Length}}{2\pi}$ $d = \frac{\text{Length}}{2\pi}$
	$d = \frac{Fad}{\pi}$			$d = \frac{\text{Length}}{\pi}$

•	CITY	•	-
- 1	1.14	•	
_		~	. 1.

AREA

ACHAR	≥ FOIRMLÍ	TRIANTÁN TRIANGE	E AREA	FORMULAE
Achar = $\frac{\mathrm{ah}}{2}$	$a = \frac{2(Achar)}{h}$ $h = \frac{2(Achar)}{a}$	a h	$Area = \frac{ah}{2}$	$a = \frac{2(Area)}{h}$ $h = \frac{2(Area)}{a}$

ACHAR	FOIRMLÍ	DRONUILLEOG RECTANGLE	AREA	FORMULAE
Achar = ab	$a = \frac{Achar}{b}$ $b = \frac{Achar}{a}$	b	Area = ab	$a = \frac{\text{Area}}{b}$ $b = \frac{\text{Area}}{a}$

ACHAR	FOIRMLÍ	CEARNÓG SQUARE	AREA	FORMULAE
Achar = a ²	a = √Achar	a	Area = a ²	a = √Area

ACHAR	FOIRMLÍ	FÍOR - H H - FIGURE	AREA	FORMULAE
Achar = pq - 2ab	$p = \frac{(Achar + 2ab)}{q}$		Area = pq - 2ab	$p = \frac{(Area + 2ab)}{q}$
Achar = at + 2qr	$q = \frac{(Achar + 2ab)}{p}$	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	Area = at + 2qr	$q = \frac{(Area + 2ab)}{p}$
Nóta: p = a + 2r	$a = \frac{(pq - Achar)}{2b}$		Note: p = a + 2r	$a = \frac{(pq - Area)}{2b}$
q = 2b + t	$b = \frac{(pq - Achar)}{2a}$		q = 2b + t	$b = \frac{(pq - Area)}{2a}$

ACHAR	FOIRMLÍ	TRAIPÉISIAM TRAPEZIUM	AREA	FORMULAE
$Achar = \frac{h(a+b)}{2}$	$a = \frac{2(Achar)}{h} - b$ $b = \frac{2(Achar)}{h} - a$ $h = \frac{2(Achar)}{(a+b)}$	b h	$Area = \frac{h(a+b)}{2}$	$a = \frac{2(Area)}{h} - b$ $b = \frac{2(Area)}{h} - a$ $h = \frac{2(Area)}{(a+b)}$

ACHAR	FOIRMLÍ	COMHTHREOMHARÁN PARALLELOGRAM	AREA	FORMULAE
Achar = ah	$a = \frac{Achar}{h}$ $h = \frac{Achar}{a}$		Area = ah	$a = \frac{Area}{h}$ $h = \frac{Area}{a}$

ACHAR	FOIRML	DIOSCA DISC	AREA	FORMULAE
Achar = πr^2	$r = \sqrt{\frac{Achar}{\pi}}$		Area = πr^2	$r = \sqrt{\frac{Area}{\pi}}$
Achar = $\frac{\pi a}{4}$	$d = \sqrt{\frac{4(Achar)}{\pi}}$		Area = $\frac{\pi d^2}{4}$	$d = \sqrt{\frac{4(Area)}{\pi}}$

ACHAR	FOIRMLÍ	DRONCHÓN RIGHT CONE	AREA	FORMULAE
Achar = πrl Nóta: $l^2 = r^2 + h^2$	$r = \frac{Achar}{\pi l}$ $l = \frac{Achar}{\pi r}$	h	Area = πrl Note: $l^2 = r^2 + h^2$	$r = \frac{Area}{\pi l}$ $l = \frac{Area}{\pi r}$

ACHAR	FORMLÍ	SORCÓIR CYLINDER	AREA	FORMULAE
Achar = $2\pi rh$ Achar = πdh	$r = \frac{Achar}{2\pi h}$ $h = \frac{Achar}{2\pi r}$ $d = \frac{Achar}{\pi h}$ $h = \frac{Achar}{\pi d}$	h d	Area = 2π rh Area = π dh	$r = \frac{\text{Area}}{2\pi h}$ $h = \frac{\text{Area}}{2\pi r}$ $d = \frac{\text{Area}}{\pi h}$ $h = \frac{\text{Area}}{\pi d}$

ACHAR	FOIRMLÍ	sféar sphere	AREA	FORMULAE
Achar = $4\pi r^2$ Achar = πd^2	$r = \sqrt{\frac{Achar}{4\pi}}$ $d = \sqrt{\frac{Achar}{\pi}}$	r	Area = $4\pi r^2$ Area = πd^2	$r = \sqrt{\frac{\text{Area}}{4\pi}}$ $d = \sqrt{\frac{\text{Area}}{\pi}}$

TOIRT VOLUME

TOIRT	FOIRMLÍ	DRONCHÓN RIGHT CON	VOLUME	FORMULAE
$Toirt = \frac{\pi r^2 h}{3}$	$r = \sqrt{\frac{3(Toirt)}{\pi h}}$ $h = \frac{3(Toirt)}{\pi r^2}$	h	Volume = $\frac{\pi r^2 h}{3}$	$r = \sqrt{\frac{3(\text{Volume})}{\pi h}}$ $h = \frac{3(\text{Volume})}{\pi r^2}$

TOIRT	FOIRMLÍ	BLOC DRONUILLEOGACH RECTANGULAR BLOCK	VOLUME	FORMULAE
Toirt = abc	$a = \frac{\text{Toirt}}{\text{bc}}$ $b = \frac{\text{Toirt}}{\text{ac}}$ $c = \frac{\text{Toirt}}{\text{ab}}$	c b	Volume = abc	$a = \frac{\text{Volume}}{\text{bc}}$ $b = \frac{\text{Volume}}{\text{ac}}$ $c = \frac{\text{Volume}}{\text{ab}}$

TOIRT	FOIRMLÍ	SORCÓIR CYLINDER	VOLUME	FORMULAE
	$h = \frac{\text{Toirt}}{\pi r^2}$			$h = \frac{\text{Volume}}{\pi t^2}$
Toirt = πr ² h	$h = \frac{4(Toirt)}{\pi d^2}$		$Volume = \pi r^2 h$	$h = \frac{4(\text{Volume})}{\pi d^2}$
$Toirt = \frac{\pi d^2 h}{4}$	$r = \sqrt{\frac{Toirt}{\pi h}}$	h	$Volume = \frac{\pi d^2 h}{4}$	$r = \sqrt{\frac{\text{Volume}}{\pi h}}$
	$d = \sqrt{\frac{4(Toirt)}{\pi h}}$	d		$d = \sqrt{\frac{4(Volume)}{\pi h}}$

TOIRT	FOIRMLÍ	SFÉAR SPHERE	VOLUME	FORMULAE
$Toirt = \frac{4\pi r^3}{3}$	$r = \sqrt[3]{\frac{3(\text{Toirt})}{4\pi}}$		$Volume = \frac{4\pi r^3}{3}$	$r = \sqrt[3]{\frac{3(\text{Volume})}{4\pi}}$
Toirt = $\frac{\pi d^3}{6}$	$d = \sqrt[3]{\frac{6(Toirt)}{\pi}}$		$V = \frac{\pi d^3}{6}$	$d = \sqrt[3]{\frac{6(\text{Volume})}{\pi}}$

TOIRT	FOIRMLÍ	DRONPHRIOSMA RIGHT PRISM	VOLUME	FORMULAE
Toirt = (Achar)h	$Achar = \frac{Toirt}{h}$ $h = \frac{Toirt}{Achar}$	Achar = Achar an Bhoinn Area = Area of Base	Volume = (Area)h	$Area = \frac{Volume}{h}$ $h = \frac{Volume}{Area}$

Foirmle don fad:

Distance formula:

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Foirmle don fána:

Slope formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Foirmle don lárphointe:

Midpoint formula:

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Cóthromóid líne:

Equation of a line:

$$y = mx + c$$
$$y - y_1 = m(x - x_1)$$

Riail Simpson: Garachar = $\frac{h}{3}$ (Ceád + Deireadh + C.D.R.C.) áit gur Céad = an Cheád ordanáid,

Deireadh = an ordanáid Deireanach, C.D.R.C. = Corr ordanáidí faoi Dó + Réidh

ordanáidí faoi Ceathair, h = an t-eatramh.

Simpson's Rule: Approximate Area = $\frac{h}{3}$ (First + Last + T.O.F.E.) where First = First ordinate,

Last = Last ordinate, T.O.F.E. = Twice the sum of the Odd ordinates + Four times

the sum of the Even ordinates, h = the interval.