15182

MATHEMATICS - ALTERNATIVE - ORDINARY LEVEL PAPER 2 (300 marks)

FRIDAY, 12 JUNE - MORNING 9.30 - 12.00

Attempt SIX QUESTIONS (50 marks each)

Marks may be lost if all your work is not clearly shown.

1. The diagrams show two house-signs in the shape of a rectangle and of a circle. Each sign is surrounded by a thin border and the area of each sign is 154 cm².

Take
$$\pi = \frac{22}{7}$$
.

- (i) Find the length of the border around the rectangular sign.
- (ii) Find the radius length of the circular sign.
- (iii) Find the length of the circular border.

A third sign combining half the circle and the rectangle is made as in the diagram.

Calculate the length of the border around this sign.

A rectangular block of plastic has length 25 cm, width 12 cm and height 11 cm.
 Calculate its volume.

The block is melted down and reformed into 6 solid cylinders each of height 5.6 cm and of diameter 10 cm. The rest of the plastic is waste. Find the percentage of the block that is waste. (Take $\pi=\frac{22}{7}$).

- A person is asked to choose at random an integer between 1 and 8 inclusive. 3. (a) What is the probability that the number chosen is either a 3 or a 4?
 - A batch of 100 eggs was classified (b) according to size (1 or 2) and according to colour (brown or white). The results are given in the table.

SIZE	BROWN	WHITE
1	40	20
2	24	16
Z		

An egg is chosen at random. What is the probability that it is

- (i) brown
- white (ii)
- white and size 1 (iii)

In a box of 400 such eggs how many size 1 white eggs would you expect to find?

Copy the diagram into your answerbook and

- mark with * a pair of alternate angles (i)
- mark with \square a pair of corresponding angles. (ii)
- In the diagram K II L.

- (1)
- (ii)

In the parallelogram (c)

$$|ad| = 2|ab|$$

$$|bk| = |kc|$$
.

Say why the line ak bisects $\angle bad$.

- 5. (a) A survey map is drawn to a scale of 1 to 10 000. The distance between two towns on the map is 25 cm. What is the actual distance in kilometers between the towns?
 - (b) h is the point (-2, 5) and k is the point (-2, -5).
 Show that the X axis bisects the line segment [hk].
 t is the point such that the origin is the centre of [ht]. Find the coordinates of t.
 Verify that the Y axis bisects the line segment [kt].

(c) When the angle of elevation of the sun is 30° a vertical pole $\sqrt{3}$ units in length casts a shadow. Find the length of the shadow.

30°

The diagram shows the same pole at an angle of 30° to the vertical. Find the length of its shadow when the sun is at the same angle of elevation as before.

6. p and q are two points having coordinates (-1, 3) and (5, -1), respectively.

Find

- (i) slope of pq
- (ii) k, the midpoint of [pq].

Find the equation of the line through k which is perpendicular to pq.

Test if this line contains the point (4, 5).

- 7. *(a)*
- (i)
- Calculate x
- (ii)
- Write down the ratio for tan A and for sin A.

(b) Given that

$$tan P = 2.4$$

find

- (i)
- (ii)

abcd is a rectangle and k is (c) the midpoint of [bc]

0

Show that

 $\tan \beta = 2 \tan \alpha$.

(a) Simplify $\frac{45}{360}$

The diagram shows an angle of 45° at the centre of the circle of radius length 14 cm. Calculate the distance d using the ratio, above, and

taking $\pi = \frac{22}{7}$.

(b) The diagram represents a tile pattern and the Δ pxy is an enlargement of the Δ prq.

(ii) Write down the scale factor of the enlargement.

If the area of $\Delta prq = 36 \text{ cm}^2$, (iv) find the area of the Δ pxy.

Formulae for Paper II

Rectangle

Area: abLength: 2(a + b) b = Area / a

Circle

Volume: abc

Cylinder

Slope formula: $\frac{y_2 - y_1}{x_2 - x_1}$

Midpoint formula: $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Equation of line: y = mx + c, or $y - y_1 = m(x - x_1)$

For perpendicular lines: $m_1 m_2 = -1$

Angle at centre of circle measures 360°.