

JUNIOR CERTIFICATE EXAMINATION, 1998

MATHEMATICS — HIGHER LEVEL — PAPER 2 (300 marks)

FRIDAY, 12 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each).

- (i) Find the sum of 50% of 20 and 60% of 30.
- (ii) The measurements of the three angles of a triangle are in the ratio 4:5:6. Find, in degrees, the measurement of each of the angles.
- (iii) Find the value of $k \in \mathbb{N}$ such that

$$k^2 = (5 + \sqrt{7})^2 + (5 - \sqrt{7})^2.$$

(iv) Two circles, each with radius of length r, fit exactly inside a larger circle, as shown.

Express the area of the shaded region in terms of r and π .

(v) pt is a tangent to the circle.

|pa| = 4 and |ab| = 5.

Find | pt |.

(vi) The circle in the diagram has centre o.

 \bigvee Find the value of x and the value of y.

(vii) $de \perp ab$ and $bc \perp ad$.

$$|de| = |ac| = 4.$$

Name two triangles that have angles which are, respectively, equal in measure.

Hence, or otherwise, find the value of | bc | . | ae |

(viii) The equation of a line is 4x + ty - 10 = 0 where $t \in \mathbb{R}$.

The line contains the point (-1, 2).

Find the value of t.

- (ix) The image of the point (1, 3) under the axial symmetry in the line L is the point (3, 7). Find the equation of L.
- Find the area of the triangle abc where $| \angle abc | = 23^{\circ} 35'$, | ab | = 5 cm and | bc | = 8 cm.
- 2. (a) At the beginning of each year for three consecutive years a person invested IR£560 at 5% compound interest per annum.

Calculate the total value of the three investments at the end of the third year.

(b) If $\frac{1}{3}(a-2b) = \frac{1}{4}$, express a in terms of b.

Hence, show that

$$2z + w = -3$$
 if it is given

that

$$z + 3a = 2b$$
 and $w - 2a = 4b$.

3. Prove that the angles at the base of an isosceles triangle are equal in measure.

abcd is a parallelogram.

The line bg bisects $\angle abc$.

h is an element of the line cd and of the line bg.

Prove that

(i)
$$|ab| = |ag|$$

(ii)
$$|dg| = |dh|$$

(iii)
$$|ad| = |ch|$$
.

4. Prove that in a right-angled triangle the area of the square on the hypotenuse is the sum of the areas of the squares on the other two sides.

In the triangle xyz, $xw \perp yz$.

Prove that

$$|xy|^2 + |wz|^2 = |yw|^2 + |xz|^2$$
.

- Find the coordinates of the point where L crosses the y-axis. **(i)**
- (ii) Find the slope of L.
- Prove that L is perpendicular to K. (iii)
- Find the coordinates of q, the point of intersection of L and K. (iv)
- Write down the equation of the line through q which is parallel to the x-axis. (v)
- Calculate the area of the triangular region enclosed by L, K and the y-axis.
- (a) Write down the value of cos 60°.

Hence, or otherwise, calculate the value of k in the right-angled triangle shown in the diagram.

(b) In the right-angled triangle abc,

$$|ay| = |yc| = 4$$
 and $|ab| = 12$.

Calculate, as accurately as the Tables allow,

(i)
$$| \angle aby |$$

(c) Two lighthouses, p and q, are 73 km apart. q is directly East of p.

Another lighthouse, r, is situated 52 km from q.

The bearing of r from p is E 31° 20′ N.

Calculate | pr |, correct to the nearest kilometre.

