AN ROINN OIDEACHAIS

JUNIOR CERTIFICATE EXAMINATION, 1993

MATHEMATICS - HIGHER LEVEL - PAPER 2 (300 marks)

FRIDAY, 11 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each)

Marks may be lost if all necessary work is not clearly shown. Mathematics Tables may be obtained from the Superintendent.

- 1. (i) A sum of money, invested at 10% per annum interest, amounts to IR£907.50 after one year.

 How much was invested?
 - (ii) x : y : z = 2 : 4 : 5. z = 35Find x + y + z.
 - (iii) Simplify $\frac{1}{(25)^{\frac{3}{2}}}$. Give your answer in the form $\frac{1}{a}$, $a \in N_0$.
 - (iv) a b c is an isosceles triangle with |ab| = |ac|. $cx \perp ab$ and $by \perp ac$.

Write an expression for the area of \triangle abc. Hence, or otherwise, prove that |cx| = |by|

(v) L is the line y = 1, M is the line x = 2. Find the image of p(3, 2) under S_L o S_M .

Name the single transformation which is equivalent to \mathbf{S}_L o \mathbf{S}_M .

(vi)
$$| \angle abc | = | \angle rst | = 40^{\circ}$$

 $| \angle bca | + | \angle str | = 140^{\circ}$

Show that $| \angle bac | = | \angle str |$

Hence or otherwise show that

$$\frac{|ab|}{|st|} = \frac{|bc|}{|rs|}$$

(vii) pt is a tangent to a circle at t. ps cuts the circle at r and s. |pr| = |rs|.

Show that $|ps|^2 = 2|pt|^2$

(viii) Find the coordinates of the point of intersection of the lines

$$3x + 4y = -1$$

$$x-2y=3.$$

- (ix) M is the line 3x + ky = 11 which contains (1, 2). Find the value of k and the coordinates of the point where M cuts the y-axis.
- (x) Find the value of A for which $\cos A = -1$, $0^{\circ} \le A \le 360^{\circ}$

IR£2500 is then repaid.

Interest is charged at x% per annum on the remainder for the second year. The amount owed at the end of the second year is IR£2500.

Calculate x correct to the nearest integer.

(b) If
$$\frac{1}{h^2} - 8p = m^2$$

express h in terms of p and m.

Determine the values of h when m = 10 and p = -8.

- 3. (i) Prove that a line drawn parallel to one side of a triangle divides the other two sides in the same ratio.
 - (ii) In $\triangle rst$, $xy \parallel st$, $xu \parallel sy$ and $\mid ry \mid : \mid yt \mid = \mid ru \mid : \mid xy \mid$. Show that $\mid xy \mid = \mid uy \mid$.

- (iii) Hence, or otherwise, prove that sy bisects $\angle xyi$.
- 4. (i) Prove that a line is a tangent to a circle at a point t on the circle if it is perpendicular to the diameter through t.
 - (ii) p, t and u are points on a circle K, centre o, wt is the tangent at t.

 [pt] is a diameter.

 Prove that $|\angle wtu| = |\angle tpu|$.

(iii) [dm] and [cb] are diameters of a circle, centre o. c ab and pm are tangents at b and m respectively.Show that $|\angle dba| = |\angle pmc|$

5. a(2, 5), b(-1, 1), and c(6, 2) are the vertices of a triangle.

Find | bc |.

Verify that $ab \perp ac$.

Find the equation of the line K through a, which is perpendicular to bc

q is the mid-point of [bc].

Find the coordinates of q.

Verify that q is the circumcentre of Δ abc.

6. (a) Without using the Tables, construct an angle A such that

$$\cos A = \frac{2}{5}$$

Using the Tables, find the measure of the angle B such that

$$\cos B = 2\cos A$$
, $0 \le B \le 90^{\circ}$

(b) t, x, u and y are points on level ground, x, u and y in a straight line.

From x the direction of t is East 39° 46' North.

From y the direction of t is West 68° 26' North.

u is directly South of t.

|xy| = 95 m

Find | tu |, correct to the nearest metre.

