Examination Number ## AN ROINN OIDEACHAIS M.45(a) INTERMEDIATE CERTIFICATE EXAMINATION, 1980 MATHEMATICS - LOWER COURSE - PAPER I (150 marks) FRIDAY, 13 JUNE - MORNING - 9.30 to 12.00 SECTION A (45 marks) | Answer each question by If you wish to change an | You should not spend more the writing one of (a), (b), (c), (d) answer, cross out your first one obtained from the Superinter | l) in the box under each que hoice and write your new | uestion number. | |--|---|---|---------------------------| | THIS | PAPER MUST BE ENCLOSED | IN YOUR ANSWER BOO | K | | 1. 56·2 × 0·5 is ed | qual to | | | | (a) 56·70 | (b) 28·10 | (c) 281·00 | (d) 112·40 | | 2. $2\frac{3}{4} \div \frac{3}{4} =$ | | | | | (a) $3\frac{2}{3}$ | (b) 2 | (c) $2\frac{1}{16}$ | (d) $3\frac{1}{2}$ | | 3. The volume of a the radius is | cylinder is 24. The radius of | f its base is equal to its he | eight. Taking $\pi = 3$, | | (a) 8/3 | (b) 2 | (c) 8 | (d) 24 | | 4. V.A.T. at 25% is article is | added to the price of an artic | ele valued at £25. The fin | al price of the | | (a) £6·25 | (b) £31·25 | (c) £26 | (d) £18·75 | | 5. P,Q,R,S are lines | such that $P \parallel Q$, $R \perp Q$, | S ⊥ R. The number of pa | arallelograms formed is | | (a) 1 | (b) 2 | (c) 4 | (d) 0 | | 6. The set of all cou | ples such that the point k is t | he centre of each is | | | (a) axial symn
(c) translation | | central symmetry parallel projection | | | | | | 0 | | 7. $ \angle pqr = 130^{\circ}$. | Then y is (b) 60 | *** | * | (d) 20 (c) 30 ## AN ROINN OIDEACHAIS M.45 INTERMEDIATE CERTIFICATE EXAMINATION, 1980 MATHEMATICS - LOWER COURSE - PAPER I (150 marks) FRIDAY, 13 JUNE, MORNING - 9.30 to 12.00 SECTION B (105 marks) Attempt QUESTION 1 and THREE other questions 1. Use your tables, page 20 to page 27, or otherwise, to find the value of $$p^2 + \sqrt{3p} + \frac{1}{p^2}$$ where p = 13.67 Express your answer correct to one place of decimals. (25 marks) 2. The area of one face of a solid cube of lead is 64 cm². Calculate the volume of the cube. The lead is melted down and made into a solid cylinder having a base 8 cm. in diameter. Calculate the height of the cylinder, taking π to be $\frac{22}{7}$ and give your answer correct to one place of decimals. (20 marks) 3. The Δtrw is the image of the Δpqr under the translation qr. - (a) Fill in the missing letters in your answer book - (i) $(q, r) \uparrow (,)$ - (ii) $(,) \uparrow (w, t)$ - (iii) $(t,) \uparrow (, r)$ - (b) [r w] is the image of [p t] under a certain parallel projection. What is the image of (i) [p r], (ii) $\triangle pqr$ under the same parallel projection? (c) The lines qp and wt when produced meet at k. If the area of Δpqr is 5, say what is the area of (i) Δkpt (ii) Δkqw . (20 marks) 4. Prove that a diagonal of a parallelogram bisects the area of the parallelogram. Prove that the area of a Δ abc is $\frac{1}{2}$ |ab|. h, where h is the distance of a from ab. (25 marks) 5. Draw a circle of radius 5 cm. Find two points q and r of the circle such that |qr| = 6 cm. Using [qr] as base construct the Δ pqr such that |pq| = |pr| and p is a point of the circle. Measure [pq] and $\angle pqr$. (25 marks) 6. Show, with proof, how to construct a tangent to a given circle from a point outside the circle. pt is a tangent to the circle K. $x \in K$ such that |pt| = |px|. Prove that px is also a tangent to K. (25 marks) 7. If $\tan A = 0.3$ and $A < 90^{\circ}$, use your tables to find A. When the angle of elevation of the sun is 16° 42', a shadow y metres in length is cast by a pole 12 m high. Calculate y. When the shadow is only half as long, is the angle of elevation doubled? Give your reason. (30 marks)