ROINN **OIDEACHAIS** AN

INTERMEDIATE CERTIFICATE EXAMINATION,

MATHEMATICS - SYLLABUS A - PAPER I (300 marks)

THURSDAY, 7 JUNE - MORNING, 9.30 to 12.00

Attempt QUESTION 1 (100 marks) and FOUR other questions (50 marks each) Marks may be lost if all your work is not clearly shown Mathematics Tables may be obtained from the Superintendent

3 30

230 10

1. A journey of 276 km began at 1040 hrs and ended on the same day at 1430 hrs. (i) Find the average speed in km/hour.

(ii) Money invested for a year earned interest at

4% on the first IR£5000 and

5% on any money in excess of IR£5000.

How much was invested if the interest earned was IR£300 ?

(iii) Solve for x

 $(3x - 1)^2 - (3x - 1) - 6$

The diagram shows the relation \mathbf{R} . (iv) List the couples of R o R.

(v) $f: x \to 2x - 1$ and $g: x \to \frac{x+1}{2}$

Find $(f \circ g)(x)$.

(vi) Express a in terms of b and x if x = a +

If $\frac{p}{q} = \frac{3}{4}$, find the value of $\frac{4p + 2q}{8p - q}$

Find the value of k, if (viii)

 $\log_8 64 + \log_4 64 = \log_2 k .$

In the histogram shown, calculate the greatest of the three frequencies.

Find the range of values of x for which (x) $(3 - x)(x + 2) \ge 0$.

OVER →

A grain-silo consists of a cylinder on an inverted cone, (as in diagram).

> The height of the cylindrical part is 10 m and the length of its radius is 2 m.

The slant height of the cone is 2.5 m.

Show that 42π m³ is the volume of the silo.

When the volume of grain in the silo is 22π m³, calculate the depth of grain measured from the apex (point) of the cone.

3. (a) Solve, correct to two decimal places,

$$x^2 - 10x + 22 = 0$$

- (b) Factorise
 - (i)
- A and B are two sets, there (c) being 20 elements in A and 15 elements in B.

State the

- (i) possible maximum 3 5
- (ii) possible minimum 5

of $\#(A \triangle B)$.

Illustrate each of those situations using separate Venn diagrams.

The table shows commission money paid to members of staff of a large store 4. during a particular month:

Money, IR£	0-100	100-200	200-250	250-300	300-500
Number of Staff	4	14	16	10	6

[0-100 includes 0 but not 100, etc.]

Calculate, using mid-interval values, the mean sum paid per staff member. Construct a cumulative frequency table as indicated and sketch its ogive.

Money, IR£	< 100	< 200	< 250	< 300	< 500
Number of staff			of slupte:		roquel ada

Use the ogive to estimate

- (i) the median commission paid.
- (ii) the number of staff who had sales exceeding IR£15 000, assuming that commission is $2\frac{1}{2}\%$ of the values of sales.

[Commission: e.g. A staff member who sells, say, IR£10 000 worth of goods would receive IR£250 over and above normal pay.]

- (i) the length of an adjacent side 5
- the area of the rectangle.

Draw the graph of the area function

$$x \rightarrow 5x - x^2, x \in \mathbb{R}$$

in the domain $0 \le x \le 5$.

Use the graph to estimate

- (i) the length of x for maximum area.
- the maximum area. (ii)
- (iii) the length of adjacent sides when the area is 3.5.

A club chartered an aeroplane for IR£2400 to fly a total of x members to a football 6. The members agreed to share the cost equally.

When four members failed to travel, the club was obliged to charge the others an extra IR£10 each and also to pay the remaining IR£60 from club funds.

How many members were in the original list to travel?

$$\frac{7400-60}{5c-4} = \frac{2400}{x} + 10$$

$$\frac{7=30}{5c-4}$$

$$-402+2400x$$

$$\frac{10\pi (2 + 2400)(x-4)}{10\pi (2 + 2360)} = 3(2400-60)$$

$$\frac{10\pi (2 + 2360)}{19\pi (2 + 2360)} = \frac{2340}{25\pi (2600)} = \frac{2340}{25\pi (26$$