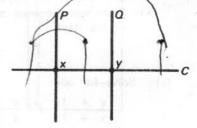


MATHEMATICS - HIGHER COURSE - PAPER I (300 marks)

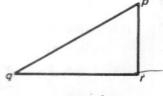
## SECTION A (100 marks)


- 1.  $\left(\frac{1}{2} \div \frac{1}{3}\right) + \frac{1}{4} =$
- (a)  $\frac{5}{12}$
- (b)  $\frac{6}{12}$
- (c)  $\frac{11}{12}$
- (d)  $\frac{21}{12}$

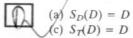
- 2. 63% of 9% is
- (a) 567%
- (b) 56·7%
- (c) 5-67%
- (d) 0.567%
- 3. If the L.C.M. of x and 24 is  $1\overline{20}$ , then the least value that x can have is
- A
- (a) 5
- (b) 10
- (c) 15
- (d) 20
- 4. The surface area of solid hemisphere with radius of length 10 cm is
- 0
- (a)  $25\pi \text{ cm}^2$
- (b)  $50\pi \text{ cm}^2$
- (c)  $200\pi \text{ cm}^2$
- (d)  $300\pi \text{ cm}^2$

- 5. 0.00516 correct to 2 signficant figures is
- A (a) 0.0052
- (b) 0.01
- (c) 0.00)
- (d) 0.52

- 6.  $(e,g) \uparrow (g,h)$  and  $(e,g) \uparrow (r,s) =$
- $\beta_{A}$  (a)  $\overrightarrow{eh} = r$
- (b)  $\overrightarrow{eh} = 2\overrightarrow{rs}$
- (c)  $(e,h) \uparrow (r,s)$
- (d)  $(g,h) \uparrow (e,s)$


- 7.  $P \parallel Q$  and  $P \perp C$
- $S_Q \circ S_P =$




- (a) xy
- (b)  $\overrightarrow{yx}$
- (c)  $\overrightarrow{2xy}$
- (d)  $\overrightarrow{2yx}$

- 8. g is a point.  $S_g \circ S_g$  is
- (a) a point
- (b) a translation
- (c) a couple
- (d) 1<sub>π</sub>

- 9.  $\overrightarrow{pr} \circ \overrightarrow{qr} \circ \overrightarrow{pq}$



- (a) 1π
- (b) p
- (c) 2 pr
- (d)  $2 \overrightarrow{rp}$
- 10. D is a diameter of the circle K. T is a tangent perpendicular to D. Which one of the following is not true?



- (b)  $S_D(K) = K$ .
- (d)  $S_T(K) = K$

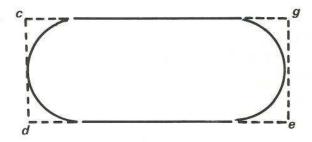
4TER2 11. K makes an angle of 30° with pq and |pq| = 4 cm.The image of [pq] under the projection on a line L where the projection is taken parallel to The minimum value of |rs| is 100 (a) 1 cm (b) 2 cm (c) 3 cm (d) 4 cm k is the centre of the circle of radius of length 5 12. If |hm| = 8, then |mq| is (b)  $\sqrt{12}$  (d) 2 13. |x| =200 TB (a) 13 (b)  $2\frac{1}{2}$ (c) 43 (d) 5 14. In the quadrilateral pqrs, the value of x is (a) 40° (b) 45° (c) 50° (d) 52° 15. The angle made by the line 2y-2x-1=0 with the positive sense of the X-axis is (a) 63° 32' (b) 63° 26' (c) 45° (d) 47° 16. The translation  $(-3\frac{1}{2}, 2\frac{1}{2}) \rightarrow (3, -2)$  is the same as the translation (a)  $(1,1) \rightarrow (-2\frac{1}{2}, -3\frac{1}{2})$ (c)  $(1, 1) \rightarrow (7\frac{1}{2}, -3\frac{1}{2})$ (b)  $(1, 1) \rightarrow (4, -1)$ (d)  $(1, 1) \rightarrow (7\frac{1}{2}, 1\frac{1}{2})$ 17. The mid-point of the line segment [pq] where p(1, 3) and q(4, -3) is (a)  $(2\frac{1}{2}, 3)$ (b)  $(-1\frac{1}{2}, 3)$ (c) (5, 0)(d)  $(2\frac{1}{2}, 0)$ 18. L represents the line y = x. The image of the X-axis under the axial symmetry in L is (a) y = x(c) y = 0(d) x = 019. k is the centre of the cirle of radius of length 3.  $\cos \angle pqr =$ (b)4 (d)  $\frac{3}{4}$ If the tan  $Q = \frac{1}{\sqrt{3}}$ , then sin Q is (c)  $\frac{2}{\sqrt{3}}$ (b)  $\frac{1}{2}$ (d) 2

## INTERMEDIATE CERTIFICATE EXAMINATION, 1987

MATHEMATICS - HIGHER COURSE - PAPER I (300 marks)

THURSDAY, 11 JUNE - MORNING, 9.30 to 12.00

SECTION B (200 marks)

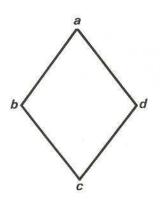

Attempt QUESTION 1 and THREE other questions (50 marks each)

Marks may be lost if all your work is not clearly shown

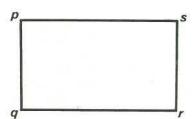
- 1. (a) A sum of money invested at 6% compound interest earned IR£225 interest in the first year. Find the sum of money invested and the interest earned in the second year.
  - (b) A rectangular field, of dimensions |cg| = 168 m and |cd| = 56 m, contains an athletics track with semicircular ends as shown in the diagram.

What is the length of the athletics track? Take  $\pi = \frac{22}{3}$ 

If an athlete covers one lap in a time of 48.48 sec., find the athlete's average speed in kilometres per hour.

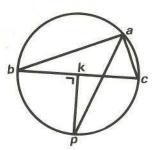



2. Prove that the diagonals of a parallelogram bisect each other.


Construct a parallelogram abcd having |ab| = 7.5 cm, |ac| = 12 cm and |bd| = 9 cm. By using the theorem of Pythagoras, or otherwise, prove that  $ac \perp bd$ . Find the image of abcd under the composition of axial symmetries  $S_{bd} \circ S_{ac}$ .

3. abcd is a quadrilateral in which each side has the same length and where no angle is a right angle.

Prove that the quadrilateral is a parallelogram and that the line ac is an axis of symmetry of the parallelogram.



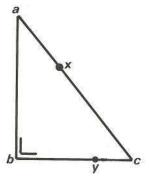

pqrs is a rectangle in which |ps| > |pq|. Prove that the line pr is not an axis of symmetry of the rectangle.



4. Prove that the measure of the angle at the centre of a circle is twice the measure of an angle at the circle standing on the same arc.

k is the centre of the circle.  $kp \perp bc$  and |ab| = |ap|. Prove that  $|\angle abc| = 22\frac{1}{2}^{\circ}$ 




5. Prove that two sides of a triangle are divided proportionally by a line drawn parallel to the third side.

abc is a right angled triangle and

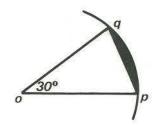
$$|ax| : |xc| = 1 : 2 = |cy| : |yb|.$$

Prove that

$$|xb| = |xy|$$

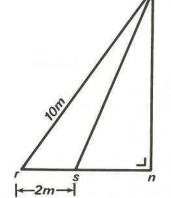


6. Find the coordinates of the points p and q where the line 5x-3y=15 cuts the X-axis and Y-axis, respectively.


Find the equation of the line K through p perpendicular to 5x-3y = 15.

Verify that K contains the point r(-2,3).

The point t(0,y), where y > 0, is such that area of  $\triangle prq = \text{area of } \triangle tqp$ .


Find the value of y.

- 7. (a) Construct a triangle deg such that |eg| = 6 cm,  $|\angle dge| = 90^{\circ}$  and  $|\angle deg| = \frac{3}{4}$ 
  - (b) opq is a sector of a circle of radius of length 10. Calculate the area of the shaded portion. Take  $\pi = 3.14$ .



(c) [kn] is a wall on level ground rsn. [kr] and [ks] are two supporting beams on the same side of the wall where |kr| = 10 m and  $|\angle krn| = 53^{\circ}54^{\circ}$  If the two supporting beams are 2 m apart on the ground, find the length of the beam [ks], as

accurately as the tables allow.

