AN ROINN OIDEACHAIS

M.44(a)

INTERMEDIATE CERTIFICATE EXAMINATION, 1980

MONDAY, 16 JUNE - MORNING, 9.30 to 12	Examination Number
SECTION A (100 marks)	

Attempt <u>all</u> questions. You should not spend more than <u>50 minutes</u> on this section.

Answer each question by writing one of (a), (b), (c), (d) in the box under each question number. If you wish to change an answer, cross out your first choice and write your new answer near the box. Mathematics tables may be obtained from the Superintendent.

THIS PAPER MUST BE ENCLOSED IN YOUR ANSWER BOOK

	1.	$132_4 \times 2_4 \text{ is}$							
		(a) 330 ₄	(b)	33010		(c)	604	(d)	2644
	2.	$(x - y)^3 =$							
1		(a) $x^3 - y^3$			(b)	x ³ +	$-3x^2y - 3xy^2$	$-y^{3}$	
		(c) $x^3 - 3x^2y -$	$3xy^2$	- y ³	(d)	x^3 —	$3x^2y + 3xy^2$	$-y^{3}$	
	3.	The factors of x^3	$-v^3$	are					
		(a) $(x - y)(x^2 +$			(L)	()	
		(a) $(x - y)(x^2 + y)(x^2 - y$				3500	$y) (x - y) (x$ $y) (x^2 - xy + y)$		
	4.	$201^2 - 199^2$ is							
		(a) 4	(b)	1800		(c)	19 200	(d)	800
	5.	The prices of two The other item c	items	are in the	ratio	$2\frac{1}{2}$:	$1\frac{1}{5}$. The	more e	expensive item costs £5.
		(a) £1.33		£2.50		(c)	£2.40	(d)	£1.66 $\frac{1}{2}$
	6.	The solution set of	· x2 -	+4x - 5 =	= 0 i	S			
		(a) $\{-5, -1\}$	(b)	{-5, 1}		(c)	{5, -1}	(d)	{-2, 3}
	7.	$\log_2 8 + \log_5 25$ is	egual	to					
1						(-)	1.201	(1)	0
1		(a) 0·301	(0)	3		(c)	1.301	(d)	9
	8.	$f \text{ is } x \to 2x - 3.$	Then	f^{-1} is $x \to$					
1									
1		(a) $\frac{x+3}{2}$	(b)	$\frac{2-x}{3}$		(c)	$\frac{3-x}{2}$	(d)	$\frac{x-3}{2}$
1	9.	If $R = \{(x, x), (y \text{ missing couple is } \}$, y) , (z	(x, y), (y, x),	(z, x)	,(,)} and <i>R</i> is a	transit	ive relation, then the
1		(a) (z, y)	(b)	(y, z)		(c)	(z, z)	(d)	(x, z)
	10.	If $S = \{(n, n) \mid a\}$	a) (n	a) (a n))	thon	one	of the following	a is f	daa C ia
1	10.	If $S = \{(p, p), (q,$			then	OHE	of the followin	g 18 12	115C. D 15
		(a) reflexive	(b)	transitive		(c)	a function	(d)	symmetrical

11.	$\left(\frac{1}{27}\right)^{\frac{2}{3}}$ is equal to					
	(a) $\frac{1}{9}$	(b) $\frac{1}{3}$	(c)	27	(d)	-9
12.	If $A = \{1, 2, 3\}$ a	$nd B = \{x, y\} the$	en#	$(A \times B)$ is		
	(a) 2	(b) 6	(c)	3	(d)	5
13.	If $p^2 + q^2 = 1$, the	n p cannot be equal	to	one of the follo	wing.	Which one ?
	(a) $-\frac{1}{2}$	(b) $\frac{1}{2}$	(c)	4/3	(d)	$-\frac{3}{4}$
14.	If $a * b = 2b - 3a$	then $2 * (-3)$ is				
	(a) 13	(b) -12	(c)	- 5	(d)	0
15.	The nth term of a se immediately before	equence is given by T_n , is	T _n =	$= n^2 - 16 + \frac{1}{n}$		Then T_{n-1} , the term
	(a) $(n-1)^2 - 16$	$+\frac{1}{n-1}$	(b)	$n^2 - 17 + \frac{1}{n}$		
	(c) $n^2 - 15 + \frac{1}{n}$		(d)	$(n-1)^2-17$	$+\frac{1}{n}$	<u>1</u> – 1
16.	If $s = ut + \frac{1}{2}ft^2$, th	en f is equal to				
	(a) $\frac{s}{ut} - \frac{1}{2}t^2$	(b) $\frac{s}{ut} + \frac{1}{2}t^2$	(c)	$\frac{2(s-ut)}{t^2}$	(d)	$\frac{s-ut}{2t^2}$
17.	If I litre of a liquid liquid has a mass of		ogram	me (kg), then 1	cubic	metre of the same
	(a) 10 000 kg		(c)	100 kg	(d)	10 kg
18.	A cyclist goes from to C, a distance of per hour from A to	A to B, a distance of 3 kilometres in one of C is x km/hr. x	of 10 e sixt is	kilometres, in a h of an hour.	half The	an hour, then from B cyclist's average speed
	(a) 19	(b) 20	(c)	18	(d)	19·5
19.	$P = \{x, y, z, t\} \text{ and }$	$Q = \{y, z, p, r\}.$	If I	$D \triangle X = Q$, the	en X	is
	(a) $\{p, r, t, x\}$	(b) $\{x, y, z, t\}$	(c)	$\{y, z, p, r\}$	(d)	{t}
20.	If $\frac{1}{x} > -\frac{1}{2}$, then	one of the followin	g is i	false:		
	(a) $x < -2$	(b) $x > \frac{1}{2}$	(c)	x > -2	(d)	x > 2

AN ROINN OIDEACHAIS

M 44

INTERMEDIATE CERTIFICATE EXAMINATION, 1980

MATHEMATICS - HIGHER COURSE - PAPER II (300 marks)

MONDAY, 16 JUNE - MORNING, 9.30 to 12

SECTION B (200 marks)

Attempt QUESTION 1 and THREE other questions (50 marks each)

- 1. (a) If $\frac{2 gm}{c^2 r} = 1$, find the value of r when $g = 7 \times 10^{-11}$, $m = 6 \times 10^{14}$ and $c = 3 \times 10^8$. Give your answer in the form $\frac{a}{b} = 10^d$, where a, b, d, ϵ Z.
 - (b) If x = 83.34 and y = 19.44, find the value of

$$\frac{1}{\sqrt{\frac{1}{x} + \frac{1}{y}}}$$

as accurately as the tables allow.

2. (a) Solve $10t^2 - 7t - 12 = 0$. Hence, or otherwise, solve

$$12 + 7(t + \frac{3}{2}) - 10(t + \frac{3}{2})^2 = 0.$$

- (b) Calculate, correct to two places of decimals, the values of x for which $3x^2 6x 8 = 0$.
- 3. f and g are functions defined on $\mathbb{R} \setminus \{0\}$.

$$f: x \to x^2 - 1$$

 $g: x \to (x-1)^2.$

- (i) Evaluate f(3) and g(3).
- (ii) Investigate if gf(3) = fg(3) where fg and gf are composite functions.
- (iii) If 4f(x) + 3 = f(kx), find the two values of k.
- (iv) Express g(x + 1) in terms of f(x).
- (v) Find a function h for which g(x) = f(x) 2h(x).

4. Draw a graph of the function $x \to x^2 - 2x - 7$ for $x \in \mathbb{R}$ in the domain $-2 \le x \le 4$. Find from your graph the values of x for which

(i)
$$x^2 - 2x - 7 = 0$$

(ii)
$$x^2 - 2x - 1 = 0$$
.

Using your graph, find the range of values of x for which $x^2 < 2(x + 1)$.

5. (a) Solve the simultaneous equations

$$2x - 3y + 5 = 0$$
$$\frac{x - y}{3} = \frac{y - 1}{3} - \frac{x}{2}$$

(b) Solve for
$$x$$
 $5^{2x+1} \div 5^{1-x^2} = 5^{15}, x \in \mathbb{N}$

and check your answer.

(c) Justify the statement

$$\log_r a = \frac{\log_{10} a}{\log_{10} r}$$

Hence, use the tables to find the value of log₃5 correct to 1 decimal place.

6. A farmer A sold a certain number of sheep, all of equal value, and made a total profit of £300. Another farmer B also sold sheep, all of equal value. He made a profit of £1 per sheep more than A but sold two sheep fewer than A. He made a total profit of £323.

Find the profit per sheep that A recorded. Find also the number of sheep that B sold.

7. A set of people were asked to count the number of items carried in their pockets. The mean number of items per person was 5. Find, using the table below, the number of people who carried exactly three items.

Items	0	1	2	3	4	5	6	7	8	9
People	2	0	2	37.3	1	7	6	5	3	0

If the people are put into 3 categories:

- (i) those with 3 items or fewer
- (ii) those with 7 items or more
- (iii) the remainder,

calculate the number of items in each category.

A piechart is drawn illustrating the number of items in each category. Show clearly how to calculate the measures of the three angles at the centre of this piechart.