Examination Number

INTERMEDIATE CERTIFICATE EXAMINATION, 1979

MATHEMATICS - HIGHER COURSE - PAPER II (300 marks)

WEDNESDAY, 13 JUNE - MORNING, 9.30 to 12

SECTION A (100 marks)

Answer ea	ach question by writing ish to change an answer,	one of (a), (b), (c), (d)	n <u>50 minutes</u> on this sect in the box under each q pice and write your new lent.	uestion number.
	THIS PAP	PER MUST BE ENCLOSI	ED IN YOUR ANSWER I	BOOK
1.	$121_3 \times 2_3 =$			
	(a) 112 ₃	(b) 1012 ₃	(c) 242 ₃	(d) 10120 ₃
2.	car is 44 km/hour, th	and a car are in the ration the speed of the training (b) $49\frac{1}{2}$		
3.	Taxable income is taxed is	d at 26%. A person's	tax bill is £156. Then	the taxable income
	(a) £4056	(b) £600	(c) £196.56	(d) £40.56
4.	circle, then the area of			
		(b) $2\pi (p - q)$		目目
	(c) $\pi (p + q) (p - q)$	(d) $2\pi p(p -$	q)	
5.	A man works 8 hours hourly wage is	a day, five days a week	. His weekly wage is £:	56. Then his
	(a) £1	(b) $33\frac{1}{3}p$	(c) £1.40	(d) $46\frac{2}{3}$ p
6.	The time to cook a me 20 minutes for each containing x kg of m	leg of meat. The num	s:- 30 minutes to heat ber of hours required to	the dish plus cook a dish
	(a) $\frac{5x}{6}$	(b) $\frac{1}{5} (x + \frac{1}{2})$	(c) $\frac{2x+5}{10}$	(d) $\frac{2x+3}{6}$
7.	It is 30 km from h to k to h at 90 km/hou	k. A car goes from the average speed	h to k at 60 km/hour an for the full journey is	d returns from
	(a) 72 km/h	(b) 50 km/h	(c) 75 km/h	(d) 150 km/h
8.	If when added together $\dots, \frac{1}{n}, \dots$ is	r the sum of the first 15 is 10.2575283, then the	999 terms of the sequentsum of the first 16 000 t	ce $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$ erms is
			(c) 10·2591283	
9.	If P and Q are sets, the	hen $(P \cup Q) \cap (P \cap Q)$) is	
	(a) $P \cap Q$		(c) <i>P</i> ∪ <i>Q</i>	(d) Q
10.	The <i>n</i> th term of a seq $T_n > 1\frac{3}{4}$ is	uence is given by $T_n =$	$2 - \frac{2}{n}$. The least value	ne of n for which
	(a) 4	(b) 6	(c) 8	(d) 10

11.	The equation which has roots 3 and -1	1S	
	(a) $x^2 = -3$ (b) $x^2 - 3 = 0$	(c) $x^2 - 2x - 3 = 0$	(d) $x^2 - 4x - 3$
12.	If $2^{\frac{1}{2}} = (\frac{1}{2})^k$, then k is		
	(a) 2 (b) -2	(c) $\frac{1}{2}$	(d) $-\frac{1}{2}$
13.	A rough graph of the function $x \to \log_b$	x is	
	(a) (b)	x (c)	(d)
14.	The highest common factor of two numl One of the numbers is 24. The other (a) 168 (b) 42	bers is 6. Their least common representation of the common terms o	
			(d) 84
15.	Let $f: x \to 2x - 2$ and $g: x \to \frac{x}{2}$ gf (k) is (a) $2(k-1)(\frac{k}{2}+1)$ (b) k	+ 1. If gf is the composite to (c) $k-1$	function, then $(d) k^2 - 2$
16.	If $Q \subset P$, then $(P \triangle Q) \triangle \phi$ is		
	(a) P (b) Q	(c) φ	(d) <i>P\Q</i>
17.	If $f: x \to 3 - 2x$, then $f^{-1}(x)$ is		
	(a) $\frac{3-x}{2}$ (b) $\frac{x-3}{2}$	(c) $2x - 3$	$(d) \frac{1}{3 - 2x}$
18.	If $x * y = \frac{1}{5} (2x + 3y)$, then		
	(a) $1 * 1 = 2$ (b) $-2 * 4$ (c) $(2 * 2) * 2 = 2$ (d) $x * y =$		
19.	The relation "X" (i.e. Cartesian product)	defined on {1, 2, 3} is	
	(a) reflexive but not symmetric (c) not reflexive	(b) symmetric but not tran(d) reflexive, symmetric an	
20	If 2 2 2 2		
20.	If $\frac{3-2x}{4} < \frac{3-2x}{6}$, then		
	(a) the inequality is never true(c) 3 < 2x	(b) $3 > 2x$ (d) $3 = 2x$	

= 0

INTERMEDIATE CERTIFICATE EXAMINATION, 1979

MATHEMATICS - HIGHER COURSE - PAPER II (300 marks)

WEDNESDAY, 13 JUNE - MORNING, 9.30 to 12

SECTION B (200 marks)

Attempt QUESTION 1 and THREE other questions

1. (a) If $v^2 = u^2 + 2as$, find the value of s when

$$u = 2\frac{1}{2}, \qquad v = 5\frac{1}{2}, \qquad a = 6 \times 10^{-2}.$$

(b) Given that k = 3.825 and m = 2.575, evaluate

$$\frac{(m+2)^2}{k\sqrt{k^2-m^2}}$$

correct to two significant figures.

(50 marks)

- 2. (a) Simplify: $\left(\frac{1}{x+h} \frac{1}{x}\right) \div h$.
 - (b) Solve the simultaneous equations

$$3x - 6y = 6$$

 $4y - 5x = -1$.

(c) If $h = \frac{2uv}{u+v}$, express v in terms of u and h and hence find the value of v when h = 1 = u.

(40 marks)

3. Draw a graph of the function

$$f: x \to 4x^2 - 4x - 15$$
$$-2 \le x \le 3 \text{ for } x \in \mathbb{R}.$$

in the domain

- (i) Draw as accurately as you can the axis of symmetry of the graph.
- (ii) Find from your graph the range of values of x for which f(x) < 0.
- (iii) Find from your graph the values of x which satisfy $x^2 x 4 = 0$.

(40 marks)

- 4. (a) Factorise fully
 - (i) a(x-1) x(b-c) + b-c
 - (ii) $x^2 y^2 x + y$
 - (iii) $12x^2 3x 15$.
 - (b) Justify the formula $\log_{\mathcal{C}} ab = \log_{\mathcal{C}} a + \log_{\mathcal{C}} b \ .$ If $p = \log_{\mathcal{C}} 5\frac{1}{4}$, $q = \log_{\mathcal{C}} 2\frac{1}{3}$, $r = \log_{\mathcal{C}} 3\frac{1}{2}$, express (p+q) in terms of r.

(50 marks)

5. (a) Using the same axes and the same scales, draw a trend graph of the monthly sales and the three monthly moving averages of the sales detailed in the following table:

Month	Jan.	Feb.	March	April	May	June
Number of items sold	12	18	30	15	21	6

(b) A test consisted of 10 questions, 1 mark per question and 0 mark for incorrect solution. The following table shows how a class of students scored in the test.

Mark	3	4	5	6	8	9
Number of Students	3	2	6	10	3	1

- (i) How many students were in the class?
- (ii) Write down the mode of the data and calculate the mean mark per student.
- (iii) How many students scored better than the mean mark?
- (iv) What percentage of students had more incorrect answers than correct answers? (Assume all questions are attempted by each student)

(50 marks)

- 6. (a) The function $f: x \to \frac{1}{x+1}$ is defined for all x > 0. Evaluate f(3) and $f(\frac{1}{3})$ and write $\frac{1}{x} f(\frac{1}{x})$ in terms of f(x). Investigate if $[f(x)]^2 = f^2(x)$, where f^2 is the composite function.
 - (b) Find, correct to two places of decimals, the maximum value of x and the minimum value of y for which $x < \sqrt{41} < y$.

Find also, correct to two places of decimals, the least number that is greater than the positive root of $5 + t - 2t^2 = 0$.

(50 marks)

7. x cars are available to carry a class of students on a picnic. If the students are shared 3 to a car, there is one student left over. If the students are shared 4 to a car, two cars get no students. Find the value of x and the number of students in the class.

(50 marks)