INTERMEDIATE CERTIFICATE EXAMINATION, 1973

MATHEMATICS - HIGHER COURSE - PAPER II (300 marks)

WEDNESDAY, 13 JUNE - MORNING, 9.30 to 12

Six questions to be attempted.

All questions are of equal value.

Mathematics tables may be obtained from the Superintendent.

- 1. (a) Calculate the compound interest on £1,200 for 2 years at 9% per annum.
 - (b) A bought goods and sold them to B making a profit of 10%. B then sold the goods for £5.94 and his profit was 20%. What did A pay for the goods and what was B's profit in cash?
- 2. (a) Find the solution set of
 - (i) 2x 1 < x 2
- (ii) $2x 1 < x 2 \le 3x + 10$

and graph the solution set on the number line in each case.

- (b) Factorise $2x^2 + 5x 3$ and hence, or otherwise, find the solution set of $2x^2 + 5x \le 3$ and graph the solution set on the number line.
- 3. (a) Use Venn diagrams to illustrate that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
 - (b) A music group consists of 30 members each of whom can sing and also play an instrument. The group gives a number of performances and occasionally some members are absent. During each performance, however, 18 must play and 24 must sing, some playing and singing at the same time.
 - (i) When 2 members are absent, how many sing only ?

When no one is absent:-

- (ii) how many both play and sing at the same time ?
- (iii) how many play only ?

What is the greatest number:-

- (iv) that can play and sing at the same time ?
 - (v) that can be absent at the same time ?
- 4. Let $P = \{a, b, c, d, e, f\}$. Draw a Venn diagram of P and put their names on the elements. Graph the relations:-
 - (i) $R = \{(d, a), (d, f)\},\$
 - (ii) $S = \{(f, a), (f, b), (f, c), (f, d)\}.$

Write down the elements of:-

- (a) R^{-1}
- (b) S^{-1}
- (c) SoR
- (d) $(S_0 R)^{-1}$
- (e) S^{-1}_{0} R^{-1}_{0}

Is $(S_0 R)^{-1} = S_0^{-1} R^{-1}$? Give a reason for your answer.

- 5. (a) The nth term of an arithmetic sequence is 2n + 5. Write down the first four terms of the sequence and find which term of the sequence is 135.
 - (b) The first three terms of an arithmetic sequence are 5, x, $10\frac{1}{2}$. Find x and the common difference of the sequence.
 - (c) Write down the first four terms of the sequence $3(2)^{n-2}$ and say, giving a reason, whether the sequence is geometric or not.

6. Sketch the graph of the function f for $0 \le x \le 6$ given that:-

$$f(x) = -x^2 + 6x - 5.$$

Find from your graph the values of x for which

(i)
$$f(x) \ge 0$$
,

(ii) f(x) is positive and increasing.

Show from your graph that f(x) will never be equal to 5 and find those values of x for which f(x) = x.

- (i) the length of the side of the square A,
- (ii) the area of the square A.

(Note: you may leave your answer in surd form in each case).

- 8. (a) (i) Write the denary numbers 13 and 4½ in binary form.
 - (ii) Write the binary numbers 1111 and 1.111 in denary form.
 - (b) (i) Find the value of each of the following:-

(ii) Find the solution set of:-

$$\{x \mid \log_{10} (x^2 + x + 8) = 1 \}.$$

9. The following table shows the frequency distribution of the marks in an examination:-

Mark	0-20	20-30	30-40	40-50	50-60	60~70	70-100
number of candidates	4	8	14	20	30	18	6

(Note: 0-20 means 0 but less than 20, 20-30 means 20 but less than 30 etc.)

Draw a histogram to illustrate the distribution. Find:-

- (i) the total number of candidates,
- (ii) the modal class,
- (iii) the median mark of the distribution.

10. Using the same axes and the same scales draw:-

- (i) the line 2x + y = 0,
- (ii) the triangle abc whose vertices are a(3,5), b(2,2), c(6,4).

If S is the set of points (x,y) of the triangle together with its interior, find the points of S for which:-

- (iii) 2x+y is a minimum,
- (iv) 2x+y is a maximum,

and find the minimum and maximum values.

Indicate the points of S for which:-

- (v) 2x+y = 8,
- (vi) $8 \le 2x + y \le 12$.