INTERMEDIATE CERTIFICATE EXAMINATION, 1972

MATHEMATICS—HIGHER COURSE—PAPER II (300 marks)

TUESDAY, 13th JUNE-MORNING, 9.30 to 12

Six questions to be attempted.

All questions are of equal value.

Mathematical tables may be obtained from the Superintendent.

- 1. Find the compound interest on £800 when invested for two years at 8% per annum. What sum of money invested at 8% per annum compound interest would give £56·16 as the interest for the second year?
- 2. (a) Solve the simultaneous equations

$$y = 2x - 5$$
$$x = 3y + 10.$$

- (b) Factorise $3x^2 3x 6$ and hence, or otherwise, find the solution set of $3x^2 3x 6 \ge 0$ and graph that set on the numberline.
- 3. (a) If $S = \{a, b, c\}$ and $R = \{1, 2, 3\}$, write down
 - (i) the couples of $S \times R$
 - (ii) a subset of $S \times R$ that is a relation and not a function
 - (iii) a subset of $S \times R$ that is a bijection.
 - (b) If $E = \{p, q\}$, write down the elements of $\mathscr{P}E$ (i.e. the set of subsets of E) and graph the relation \subset defined on $\mathscr{P}E$.

Is ⊂ an order relation? Explain your answer.

- 4. (a) Let $A = \{1, 2, 3, d\}$ and $B = \{1, d\}$. Write down the elements of $A \cap B$ and of $A \cup B$. If X is a set such that $B \cup X = A$, write down the elements of each possible X.
 - (b) Use the diagram to illustrate on your answer book the set

$$A \setminus (B \cup C)$$
.

On separate diagrams illustrate

Use your diagrams to verify the truth or otherwise of the two statements

$$A \backslash (B \cup C) = (A \backslash B) \cup (A \backslash C)$$

$$A \backslash (B \cup C) = (A \backslash B) \cap (A \backslash C).$$

- 5. A prize of £240 was shared equally by a certain number of prizewinners. If the number of prizewinners had been less by 6, each share would have been £2 greater. How many prizewinners were there?
- 6. (a) The nth term of a sequence is

$$\frac{n+1}{n^2+n+1}$$

Write down the first four terms and say, giving a reason, whether the sequence is arithmetic or not.

The *n*th term of an arithmetic sequence is 3n-1; find the sum of the first 20 terms.

(b) Explain why the limit of $\frac{a(1-r^n)}{1-r}$ is $\frac{a}{1-r}$ as n gets very large and 0 < r < 1.

Express the recurring decimal 0.15 (= 0.1555...) in the form $\frac{m}{n}$, where $m, n \in \mathbb{N}, n \neq 0$.

- 7. (a) Write the denary number 40.75 in binary form. Convert the binary number 110001.0101 to denary form.
 - (b) (i) If x and \sqrt{x} are rational numbers, write down the domain of x for which $x < \sqrt{x}$.
 - (ii) Find the value of each of the following:

$$(2\frac{1}{4})^{1/2}$$
, $\log_5 125$, $\log_{25} 5$.

(iii) If $x = \log_3 2$, show that $\log_3 (2\frac{1}{4}) = 2(1-x)$.

8. Graph the function $f: x \to 2(x-1)^2$ (= y) for values of x in the domain $-1 \le x \le 3$. Show that the line x = 1 is an axis of symmetry of the graph and find the minimum of f(x) and the value of x that gives this minimum.

Verify from your graph that there is no solution of the equation

$$2(x-1)^2 = -x,$$

where x is a rational number.

9. A market gardener recorded in a cumulative frequency table the produce from his tomato plants:

$Number of Tomatoes \\ per plant = n$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Number of plants producing n toma- toes at most	2	2	5	13	20	27	38	46	58	64	69	75	76	77	79	80

Draw a graph to illustrate the data. Find

- (i) the total number of tomato plants,
- (ii) how many plants produced 4 tomatoes per plant?
- (iii) what percentage of plants yielded 10 or more tomatoes per plant?
- (iv) the median number of tomatoes.
- 10. Indicate the set of points, S, given that the coordinates of each point in S simultaneously satisfy the inequalities

$$1 \leqslant x \leqslant 4;$$
 $2y \geqslant 1;$ $x-y+3 \geqslant 0.$

If (x, y) are the coordinates of a point in S, find

- (i) the maximum value of x + 2y
- (ii) the minimum value of x + 2y.