INTERMEDIATE CERTIFICATE EXAMINATION, 1969

MATHEMATICS - HIGHER COURSE I

WEDNESDAY, 11th JUNE - Morning 9.30 to 12

SIX questions to be answered

Mathematical Tables may be had from the Superintendent

- 1. The height of a cone is 8 inches. Its volume is 88 cubic inches. Find the radius of its base to one place of decimals. (Take $\frac{22}{\pi}$ as an approximation for π)
- 2. A sum of money was to be divided between A, B and C in proportion to the numbers 2, 3, and respectively. In error the money was divided in proportion to the numbers 1, 2, and 34 respectively. respectively.

 - (i) Who lost money because of the error?(ii) If one person gained £1.50 because of the error, what sum of money was divided?
 - 3. (a) In the diagram ap is tangent to the circle at a, and [ab] is a chord. Prove $\angle bap = \angle axb$.

(b) Two circles C₁ and C₂ touch at a point b (See diagram). The line αb is a tangent at b to each circle. The line xy is a tangent to circle C₁ at x and to circle C₂ at y. The tangents intersect in α. C_2 at y. The tangents intersect in ω . Prove that α is the mid-point of the line segment [xy].

- 4. (a) Show, without proof, how to construct the bisector of a line segment [ab].
 - (b) Prove that the perpendiculars at the mid-points of the sides of a triangle are concurrent.
- 5. (a) The images of the points a and b under reflection in the line x=0 have coordinates (3, 4) and (-2, 3) respectively. Find the coordinates of a and b.
 - (b) Write down the equation of the line containing c(1, 2) which is
 - (i) parallel to the line y = x.
 - (ii) perpendicular to the line y = x.
- 6. (a) Find the coordinates of the two points of intersection of the line y=x-2 and the circle $x^2 + y^2 = 4$. Draw a sketch. Find the distance between these two points.
 - (b) Prove that the point (1, 2) is outside the circle $x^2 + y^2 = 4$.
- 7. (a) Use tables to evaluate: sin 50°, sin 150°,
 - (b) Draw the graph of $\sin x$ ($0 \le x \le 2\pi$). Use your graph to find two solutions of the equation $2\sin x = 1$.
- 8. (a) In a triangle whose angles are A, B and C $\frac{b}{\sin B}$, where a and b are the lengths of the sides opposite A and B, sin/A = respectively.
 - (b) A field abcd is in the shape of a square combined with a triangle (see diagram).
 The sides [ad] and [bc] are 100 yards long and 140 yards long, respectively. Calculate the area of the field, given \(\frac{f}{bcd} \)
 measures 70°. (Give your answer to the nearest square yard.)

- 9. (a) α and b are points in the plane Π . S_{α} and S_{b} are central symmetries whose centres are a and b respectively.
 - (i) Draw a diagram to show that $S_{bo}S_{cs}$ is a translation.
 - (ii) Is $S_a \circ S_b = S_b \circ S_a$? Explain.
 - (b) S_x and S_y are central symmetries. S_y is the inverse of S_x . What can you say about the point x and the point y?
- 10. (a) (i) The composite of two reflections in lines which intersect is a rotation. Illustrate by a diagram.
 - (ii) Draw a diagram to illustrate that the composite of two reflections in lines which are parallel is a translation.
 - (b) X is a line, S_X is a reflection in X. Sketch a diagram of $S_X \circ S_X$.