INTERMEDIATE CERTIFICATE EXAMINATION, 1966

MATHEMATICS (Algebra)

FRIDAY, 10th JUNE - Afternoon, 2,30 to 5

ALL questions to be answered.

Mathematical Tables may be obtained from the Superintendent.

1. (1) Solve the equation

$$\frac{2x-1}{3}=1-\frac{1-x}{2}$$
.

- (ii) Write down any three values of x for which 5-3x is positive and any three values for which 5-3x is negative. (28 marks)
- 2. (a) Factorise:
 - (i) $ax + b^2 bx ab;$
 - (ii) $(x+1)^2 + 2(x+1) 15$.
 - (b) When $x^3 + px + q$ is divided by x 1, the remainder is -12 and when divided by x 2, the remainder is also -12. Find the value of p and the value of q.

 (28 marks)
- 3. Solve the following equations, giving your solutions correct to two significant figures:
 - (1) $3x^2 5x + 1 = 0$;
 - (i1) $3(2x-1)^2 5(2x-1) + 1 = 0$.

(28 marks)

- 4. To prepare for a party a student spent £1 8s. in buying cakes at 2s. 6d. each and buns at 3d. each. The cost of the cakes and buns that were eaten amounted to £1 2s. and it was found that $\frac{1}{5}$ of the cakes and $\frac{1}{3}$ of the buns remained. How many of each kind did the student buy?

 (28 marks)
- 5. (i) When $x=1-\sqrt{2}$, prove that $x^2-2x-1=0$ and hence, or otherwise, express in simplest form the value of x^3-2x^2-1 .
 - (ii) If $4x = (x-a)^2 (x-b)^2$ for all values of x, find the value of a and the value of b and hence, or otherwise, express 1360 as the difference of two squares.

(28 marks)

- 6. (i) If m, n are positive whole numbers, prove $a^m \cdot a^n = a^{m+n}$.
 - (ii) Solve, without using the tables, each of the following equations:

$$8^x = 8$$
; $\log_{10} x = 3$; $4^x = 8$; $\log_x 9 = 2$.

(iii) If $\log_3\left(\frac{10}{a}\right) = q$ and $\log_{3}a 9 = p$, show that $q = \frac{1 - \log_{10}a}{\log_{10}3}$ and express pq in terms of $\log_{10}a$.

(30 marks)

7. Draw the graph of $15x - 3x^2$ for values of x from x = 0 to x = 5.

Find from your graph, as accurately as you can, the range of values of x for which $15x - 3x^2$ decreases as x increases.

ABC is an equilateral triangle of side 5 inches. A point P is taken on AB, PQ is drawn parallel to BC cutting AC at Q and QR is drawn parallel to AB cutting BC at R. If PB = x inches, show that the area of PQRB can be expressed in the form $k(15x - 3x^2)$, where k is independent of x, and with the aid of your graph find the greatest area of PQRB.

(30 marks)