AN ROINN OIDEACHAIS.

(Department of Education).

INTERMEDIATE CERTIFICATE EXAMINATION, 1954.

MATHEMATICS (Algebra).

TUESDAY, 15th JUNE.—Morning, 10 to 12.30.

All questions to be answered.

Mathematical Tables may be obtained from the Superintendent.

- 1. (i) Solve the equation $3(x-1) \frac{1}{2}(x-5) = 4 + \frac{2}{5}x$.
 - (ii) Solve the simultaneous equations

$$3x - 4 = 2y + 9$$

 $5x - 11 = 3y + 10$

[28 marks.]

2. Six years ago A was five times as old as B was, and four years from now A will be two and one-half times as old as B will be. Find the present ages of A and B.

Find also when the sum of their ages will equal sixty years.

[28 marks.]

- 3. (a) Express the fraction $\frac{3x^2+10x-8}{2x^2+7x-4}$ in simplest form, and find its value when $x=1\frac{1}{5}$.
 - (b) Factorise fully

(i)
$$x^3+2x^2y-xy^2-2y^3$$
;

(ii)
$$2x^3+x^2-13x+6$$
.

[28 marks.]

- 4. Solve the following equations, giving your solutions correct to two decimal places:—
 - (i) $2x^2-8x+3=0$;
 - (ii) $2(3x-1)^2-8(3x-1)+3=0$.

[28 marks.]

5. A man spent 15 shillings on meat. Had the meat been 4 pence per pound dearer he would have obtained one and a half pounds less for the 15 shillings. Find the price of the meat per pound. [28 marks.]

6. If $p = \log_{10} 2$ and $q = \log_{10} 3$, express the following in terms of p and q: (i) $\log_{10} 6$; (ii) $\log_{10} 6\frac{2}{3}$; (iii) $\log_{5} 7\frac{1}{2}$.

Show also, without using the Tables, that 4q is greater than (3p+1). [30 marks.]

7. Draw the graph of $2x^2-6x+3$ for values of x from x=-1 to x=4.

Find from your graph, as accurately as you can, the roots of the equations (i) $2x^2-6x+3=0$, (ii) $2x^2-6x=1$. [30 marks.]