AN ROINN OIDEACHAIS

(Department of Education).

BRAINSE AN MHEÁN-OIDEACHAIS (Secondary Education Branch).

INTERMEDIATE CERTIFICATE EXAMINATION, 1930.

MATHEMATICS (I).

FRIDAY, 13th JUNE.-Morning 10 A.M. to 12.30 P.M.

Each item (a), (b), (c), (d), (e), (f) in Section I. will be counted as a half-question. The total number of questions answered should not exceed seven, every pair of items from Section I. being counted as a whole question.

(Candidates should see that answers to questions in excess of seven are cancelled.)

Mathematical Tables may be obtained from the Superintendent.

SECTION I.

(Each item (a), (b), (c), (d), (e), (f) in this Section carries 13 marks.)

- (a) Solve the equation $\frac{1}{4}(2x-1)(3x-1) \frac{1}{4}(2x+1)(x-2) = (x-3)(x+1) 3\frac{3}{4}$.
- (b) From the formulae Pt=m(v-u); $Ps=\frac{1}{2}m$ (v^2-u^2) find the value of s when u=49, v=51, t=10.
- (c) Show that the expressions $(x+3)(4x^2-1)(4x^2-11x-3)$ and $(2x+1)(x^2-9)(8x^2-2x-1)$ are equal for all values of x.
- (d) The expressions x^3-3x+2 and x^3+3x^2-4 have two common factors of which x-1 is one; find the other.
 - (e) Solve the equation $3x^2-11\frac{1}{2}x=2$.
- (f) If A gives B two-thirds of his money, B will then have £9. If, instead, B gives A three-quarters of his money, A will then have £9. How much money has each?

SECTION II.

- 1. Solve the equations:
 - (i) $\sqrt{4x+3} + \sqrt{2x-10} = 6$.
 - (ii) $\sqrt{4x+3} \sqrt{2x-10} = 6$.

Verify your solutions.

ot

of

e

[28 marks.]

- 2. If the factors of $6x^2-xy-y^2$ are represented by a and b, express $6x^2-xy-y^2+8x+y+2$ in terms of a and b and hence factorize the expression. [28 marks.]
- 3. Find, to two decimal places, by how much $\frac{2x+y}{x-y}$ is greater than $\frac{2x-y}{x+y}$ when $x=\sqrt{3}+\sqrt{2}-1$ and $y=\sqrt{3}-\sqrt{2}+1$. [28 marks.]
 - 4. Find the values of x and y which satisfy the equations $4(x-y)^2-5(x-y)=21$ and 3x+y=5. [28 marks.]
- 5. $\frac{1}{4}(2x^2-3x+1)$ and $\frac{1}{5}(2x^2+3x-7)$ are two positive consecutive integers of which the former is the greater. What integers are they? Could they be consecutive integers if the other were the greater? [29 marks.]
- 6. A buys a horse for £100 and sells it to B at a profit. B sells the horse at £95, his percentage loss being 1 less than A's percentage profit. How much did B pay for the horse? [29 marks.]
 - 7. Given $\log 2 = 3010$ and $\log 3 = 4771$ deduce $\log 0.081$.

Deduce also a very close approximation to the value of log 74, and hence find log 7 with corresponding accuracy. [29 marks.]

8. Plot the graph of $y=2x^2-3x-1$ for values of x between -1 and 3. Use your graph to solve the equations $2x^2-3x=3$ and $2x^2-3x=-1\frac{1}{8}$. Why cannot you solve the equation $2x^2-3x=-3$ by means of the graph? [29 marks.]