AN ROINN OIDEACHAIS BRAINSE AN IARBHUNOIDEACHAIS

DAY VOCATIONAL CERTIFICATE EXAMINATIONS, 1971

MAGNETISM AND ELECTRICITY

TUESDAY, 8th JUNE, 9.45-11.45 a.m.

INSTRUCTIONS

- (a) Not more than five questions may be attempted.
- (b) All the questions carry equal marks.
- (c) Illustrate your answers with sketches and diagrams where possible.
- (d) Figs. 1, 2, 3, 4 and 5 are on the attached sheet which must be enclosed with your answer book.
- 1. Answer briefly the following:-
 - (a) Explain (i) magnetic induction, (ii) magnetic screening. Give examples to illustrate your answer.
 - (b) Describe two different ways of magnetising a screwdriver.
 - (c) Draw on fig. 1 the magnetic field due to the bar magnets.
- 2. (a) State any rule giving the relationship between the current flowing in a straight conductor and the magnetic field which results from this current flow. State how you would verify this rule.
 - (b) A current flows in the coil shown in fig. 2. Show the direction of the magnetic field on this diagram.
 - (c) Describe with the aid of a diagram the working of an electric bell.
- 3. (a) State Lenz's Law.
 - (b) Fig. 3 shows a diagram of an electric motor.
 - (i) State which kind of electric motor is shown on fig. 3.
 - (ii) Name each part.
 - (iii) State how each part works.
- State Ohm's Law and explain briefly, with the aid of a diagram, how you would verify it.
 An electric circuit is connected as shown in fig. 4. Calculate:—
 - (a) the total resistance of the circuit.
 - (b) the voltage drop across the 6Ω resistor.
 - (c) the current flowing through the 4Ω resistor.
- 5. (i) Describe with the aid of a diagram what happens when a lead cell is (a) charged and (b) discharged.
 - (ii) Describe how a Daniell cell works.
- 6. Four cells, each of e.m.f. 2V and internal resistance $\frac{1}{2}\Omega$, are joined in series to form a battery. The battery is connected to an external resistor of 6Ω .
 - Find (i) the current flowing through the external resistor,
 - (ii) the voltage drop over the external resistor,
 - (iii) the p.d. of the battery.
- 7. Define (a) the Joule, (b) the Coulomb.
 - A $10\,\Omega$ element is placed in a copper cup of mass 100 grams containing 30 grams of water at 10° C as shown in fig. 5. The element is connected to a 20V battery. Find the time required to boil the water.

Specific heat of copper = 0·1; 1 calorie = 4·2 joules. (Specific heat capacity of copper = 0·42 kJ/kg °C)

AN ROINN OIDEACHAIS BRAINSE AN IARBHUNOIDEACHAIS

DAY VOCATIONAL CERTIFICATE EXAMINATIONS, 1971

MAGNETISM AND ELECTRICITY

EXAM. NO.....

C ...

N S

FIG.1

FIG. 2

FIG. 4

FIG.3

FIG. 5

N.B.—This page must be enclosed with your answer book.