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Abstract.

We consider the action on the maximal ideal space M of the algebra H of bounded analytic
functions, induced by an analytic self–map of a complex manifold, X. After some general
preliminaries, we focus on the question of the existence of fixed points for this action,
in the case when X is the open unit disk, D. We classify the fixed–point–free Möbius
transformations, and we show that for an arbitrary analytic map from D into itself, the
induced map has a fixed point, or it restricts to a fixed–point–free Möbius map on some
analytic disk contained in M .
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The purpose of this paper is to present a new kind of fixed–point theorem. Let H∞

denote the uniform algebra of all bounded analytic functions in the open unit disc, D,
and let M denote its maximal ideal space, or character space [B,G]. If f : D → D is
holomorphic, then (as will be explained below) it induces a map f̌ : M → M which
“extends” f in a natural way. This induced map may have no fixed points in M . For
instance, there are Möbius transformations f such that f̌ that has no fixed point. The
main observation of this paper is that, in a sense, such Möbius transformations are the
canonical fixed–point–free f̌ ’s. What happens is that for arbitrary f , there is a fixed point
for f̌ , or else there is an analytic disk P ⊂M that is mapped into itself by f̌ , and on which
f̌ is such a Möbius transformation.

In section 1 we will describe the map f̌ and its basic properties. Most of these are
very well–known. In section 2 we present the main results.

1. The map f̌ and its basic properties.
The map f̌ may in fact be constructed in a rather more general setting, as follows.

Let X be any (connected) complex manifold, and let H = H∞(X) denote the space
of all bounded analytic functions on X. H may contain only the constant functions,
depending on the nature of X. With the sup norm on X and pointwise operations, H
becomes a Banach algebra. Since ‖g2‖ = ‖g‖2 whenever g ∈ H, H is a uniform algebra
on its maximal ideal space, M . As usual, we identify M with the space of characters, or
nonzero algebra homomorphisms φ : H → C. This space M may be regarded as a subset
of the dual space H∗ of H, and so inherits the metric of H∗ (which is called the Gleason
metric in this context), and the weak–star topology of H∗. We shall denote the Gleason
distance between two homomorphisms φ and ψ by ‖φ−ψ‖. We shall have occasion to use
the following fact:

Lemma 1. The Gleason metric is weak–star lower semicontinuous on M , i.e.

lim
α
‖φα − ψα‖ ≤ ‖φ− ψ‖

whenever {φα} and {ψα} are nets and φα → φ and ψα → ψ.

Proof. This fact follows from the corresponding fact in dual Banach spaces.

Now let f : X → X be a holomorphic map. Then the map

◦f :

{
H → H

g 7→ g ◦ f
is an algebra homomorphism, hence we have a map

f̌ :

{
M →M

φ 7→ (g 7→ φ(g ◦ f))

The map f̌ is sometimes called the hull of f . This map is in fact just the restriction to M
of the adjoint of the map ◦f . As a consequence, we obtain:
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Lemma 2. The induced map f̌ is a continuous both as a self–map of M with its Gleason
metric topology, and as a self–map of M with its weak–star topology.

Proof. Indeed, f̌ is a contraction with respect to the Gleason distance, and hence
metric–continuous, and if φα → φ weak–star, then

f̌(φα)(g) = φα(g ◦ f) → φ(g ◦ f) = f̌(φ)(g)

whenever g ∈ H.

When H separates points on X, we may regard X as a subset of M , and the map f̂
as an extension of f .

It is an interesting question to ask for which X the map f̌ necessarily has a fixed
point. There are obstructions in general, as is obvious from the example of rotation on an
annulus. One general observation is this:

Lemma 3. Let X, M , f be as above. There necessarily exists a point φ0 ∈M such that

‖f̌(φ0)− φ0‖ = inf
{
‖f̌(φ)− φ‖ : φ ∈M

}
.

Proof. Since f̌ is weak–star to weak–star continuous, the function

φ 7→ ‖f̌(φ)− φ‖
is weak–star lower semicontinuous. Since M is weak–star compact, this function must
attain its minimum.

The infimum in Lemma 3 is necessarily less than 2. This follows from the fact that
the Gleason distance between any two points of a complex manifold is less than 2 (— If
H fails to separate points, then M has just one point and there is nothing to prove. In
any case, as Gleason first observed, the relation φ ∼ ψ if and only if ‖φ − ψ‖ < 2 is an
equivalence relation on M [G]; the Cauchy integral formula establishes the continuity of
the Gleason distance near the diagonal of X × X, and the transitivity of ∼ then shows
that the distance cannot exceed 2 on X ×X).

The equivalence classes under the above relation ∼ on M are called the Gleason parts
of H. Thus f̌(φ0) lies in the same Gleason part as φ0.

Corollary 4. f̌ maps the Gleason part P of φ0 into itself.

Proof. This follows from the facts that f̌ contracts the Gleason distance, and the
transitivity of ∼.

Further, we note that by the minimality property of φ0, we have

Corollary 5.
‖f̌(f̌(φ0))− f̌(φ0)‖ = ‖f̌(φ0)− φ0‖.

If φ0 is not a fixed point of f̌ , then this rigidity property is liable to impose strong
restrictions on f̌ ; in particular, if there is analytic structure on the non–one–point parts
of H, then it amounts to equality in the Schwarz lemma.
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2. The unit disk.

Now we specialise to the case when dimX = D.

In this case, it is important not to confuse f̌ with the Gelfand map f̂ : M → C defined
by

f̂(φ) = φ(f), ∀φ ∈M.

Let us denote the projection of M closD,

φ 7→ φ(z 7→ z)

by π. Then by applying Brouwer’s fixed point theorem to dilations f(rz) (r < 1), it is
easy to see that the function π − f̂ : M → C has a zero, but this merely says that some
point in some fibre of π is mapped into that fibre. It does not guarantee the existence of
a fixed point.

We recall some facts about the structure of M . The principal reference for these is
the celebrated paper of Hoffman [Annals].

The Gleason parts of H are of three main kinds. Those with more than one point have
the structure of analytic disks. For such a part P there exists a bijection h : P → D such
that f̂ ◦ h−1 : D → C is analytic whenever f ∈ H. We denote the union of all these disk
parts by G (for good). The points on the Shilov boundary Sh(H) give one–point parts, and
there are also other one–point parts. For instance, the zero set of the Gelfand transform
of the singular inner function

z 7→ exp
(
z + 1
z − 1

)
contains one–point parts and is disjoint from Sh(H) [Gam, p.162, ex.3; Garnett]. We denote
the set of one–point parts off Sh(H) by B. The family of all hulls f̌ may be describes as
the family of all weak–star continuous maps from M to M that are holomorphic on G.
This statement is true because of the Corona Theorem of Carleson [Garnett] , which states
that D is weak–star dense in M .

There is another way to classify the points of M , in terms of the way in which they
may be approximated by points of D. The points of M ∼ D lie in the various fibres
Mλ = π−1(λ) for λ ∈ S. A point of Mλ is called nontangential if it is in the closure of a
nontangential sector at λ, and horocyclic if it is in the closure of a horocyclic disk at λ.
All such points lie in G. The points of G may be characterised as those which lie in the
weak–star closures of interpolating sequences (— a sequence {xn} ⊂ D such that H|{xn}
is isomorphic to l∞). At the other extreme, if {xn} ⊂ D is a sequence that is an ε–net for
the Gleason distance for some ε < 2, then all non–disk points of M lie in the weak–star
closure of {xn}.

Theorem 1. Let f : D → D be holomorphic and let f̌ be the induced self–map of the
maximal ideal space M of H = H∞(D). Then f̌ has a fixed point in M , or there is an
analytic disk P ⊂M on which f acts as a Möbius map.

In the sequel, we shall be more precise about the nature of the Möbius map.
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Remarks. Some classical results are related to this theorem. First, if f is actually
continuous up to the boundary, then by Brouwer’s fixed–point theorem there is a fibre of
π which is mapped into itself by f̌ . For general f , the application of Brouwer’s theorem to
dilations of f shows that there exista a point which is mapped into its own fibre by f̌ . This
appears to be as far as Brouwer’s theorem will take you. In 1926, Wolff that either f has a
fixed point inside D, or else there is a boundary point ζ ∈ S such that each horocyclic disk
at ζ is f–invariant, i.e. all disks internally tangent to S at ζ are mapped into themselves
by f . See [Dineen, p.194] for this and generalisations to higher dimensions.

The induced map f̌ on M was defined and studied by Behrens in a series of papers
from 1969 to 1972. (cf. [B in Vict, Stroyan + L, pp. 244-285]. He used methods of
non–standard analysis, and he proved a number of results about fixed points for f̌ . The
nonstandard point of view is quite illuminating. If z ∈ D∗ is a point of the nonstandard
open unit disk, and f : D∗ → C∗ is an analytic function with |f | < 1, then we may define

(T (z))f = circf(z),

the standard part of f(z). T (z) is then a complex homomorphism on H. The map T is a
surjection from D∗ onto M , and the points of M ∼ D correspond to points of D∗ that are
infinitesimally close to the unit circle. The hyperbolic metric extends to D∗, and the set
of Gleason parts of H is in one–to–one correspondence with the set of hyperbolic galaxies
of D∗.

Behrens main result on fixed points is this:

Behren’s Theorem. If f̌ (1) fixes 2 disk points (points of G) in distinct fibres, or (2) is
inner and fixes a point of D and a point of Sh(H), then f(z) ≡ z.

As regards the existence of fixed points, he observed the following:

(1) f̌ fixes a point of G if and only if

inf
D
‖z − f(z)‖H∗ = 0.

(2) f̌ fixes a point of G ∩Mλ if and only if f has angular derivative equal to 1 at λ,
and if this happens then f fixes each nontangential point of Mλ and maps the weak–star
closure of each tangent horodisk into itself.

(3) Each one–point part in the weak–star closure of a sequence of iterates {fn(z)} is
a fixed point for f̌ .

(4) However, if the sequence {fn(z)} is interpolating, then no point of its weak–star
closure is a a fixed point for f̌ .

He also showed that the hull of z 7→ zn fixes only 0, and appears to assert that the
hull of 2−z

1−2z does have fixed points. This latter assertion [Vic, p.] is probably a misprint,
as will appear.

Observations (3) and (4) are also easily seen by standard arguments.
The proof we give of Theorem 1 does not require any of Behren’s results. It uses only

the results quoted above in section 1, and the part structure of H. However, we shall make
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use of Behren’s results and the nonstandard approach to prove another result which allows
us to sharpen the conclusion of Theorem 1.

Proof of Theorem 1.
Let φ0 be a point, as in Lemma (1.3), at which ‖f̌(φ) − φ‖ attains its minimum on

M , and suppose it could happen that f̌(φ0) 6= φ0. Let P be the Gleason part of φ0, which
is mapped into itself by f̌ (Cor.(1.4)). Then P is an analytic disc, so there is a bijection
h : D → P such that

ĝ ◦ h : D → C

is analytic whenever g ∈ H, and f̌ is an analytic map of P into P , in the sense that the
map

k = h−1 ◦ f ◦ h : D → D

is analytic. But this means that Cor. (1.5) gives equality in the Schwarz Lemma for k, so
that k is a Möbius transformation of D.

Now, consider the case when f is a Möbius transformation. In analyzing this, it will
sometimes be convenient to switch from the disk to the (conformally–equivalent) upper
half– plane, H.

For the present purpose, the Möbius self–maps of the disk may be divided into four
classes:

I: the identity map, z.
II: those having an internal fixed point (and the other off the closed disk). The internal

fixed point is attracting.
III: those having two fixed points on the circle (in the ordinary sense) One fixed point

attracts, the other repels. This type is typefied by

z 7→ 2− z

1− 2z

on D, or z 7→ z/2 on H.
IV: those having a single degenerate fixed point on the circle (and no other fixed point

on the sphere). This is typefied by

z + i(z − 1)
1 + i(z − 1)

on D, or z 7→ z + 1 on H.

The type of a Möbius map is evidently a conjugacy invariant.
The hull of a Möbius map is a bijection of M onto itself, and it is an isometry with

respect to the Gleason distance. Types I and II fix points in D. The hull f̌ of an f type III
or type IV permutes the fibre of each fixed point of f on S, but does not fix all points in
such fibres. In fact, each sequence of iterates for either type is an interpolating sequence,
and tends to a fixed point of f on the circle, and we know that no weak–star limit of an
interpolating sequence of iterates is fixed by f̌ .
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Theorem 2. If f is a Möbius map, then f is of Type III if and only if f̌ has no fixed
point.

Proof. Type I or II have fixed points in D.
The existence of fixed points for type IV is most readily seen by transferring to the

upper half–plane and noting that when the points xn = ni in the upper half–plane are
mapped by f(z) = z + 1, we get by a short calculation that

‖f(xn)− xn‖ ≤
1
n
→ 0.

Thus each weak–star accumulation point of {xn} is a fixed point for f̌ , by Lemmas 1 and
2.

It remains to see that type III maps have no fixed points.
It is sufficient to deal with the maps on H given by fa(z) = az for a > 0, a 6= 1.
The only fibres which intersect their images under f̌a are M0 and M∞. The case of

M∞ is equivalent to the case of M0 for the map z 7→ a−1z, so it is sufficient to show that
f̌a has no fixed point in M0.

Now fa has angular derivative equal to a at 0, so by Behren’s observation (2), f̌a fixes
no point of G.

Let φ ∈ M0 ∼ G. Then there is a point ζ ∈ H∗, the nonstandard upper half–plane
which is mapped to φ by the map T . Since φ is not a nontangential point, we have
ζ = ξ + iη, with η/ξ infinitesimal, i.e. the argument of ζ is infinitesimally close to 0 or to
π. Now [S+L] the nonstandard version of f̌ generates f̌a, in the sense that

f̌(T (z)) = T (f(z)), ∀z ∈ H∗.

Let d denote the hyperbolic distance on H. Then

d(ζ, fa(ζ)) ≥ (1− a)|ξ + iη|
max{η, aη}

and this is infinite. Thus fa(ζ) lies outside the hyperbolic galaxy of ζ, hence f̌a(φ) lies
outside the part of φ. In particular, f̌a(φ) 6= φ.

Thus f̌a has no fixed point in M .

Corollary 3. Under the hypotheses of Theorem 1, f̌ has a fixed point, or it restricts to
a Type III Möbius transformation on some analytic disk in M .
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