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ABSTRACT
We characterise the closure in C°°(R,R) of the algebra generated by an arbitrary
finite point-separating set of C'™ functions. The description is local, involving Taylor
series. More precisely, a function f € C'>° belongs to the closure of the algebra generated by
¥1,...,%, as soon as it has the ‘right kind’ of Taylor series at each point a such that ¢} (a) =
... = 7' (a) = 0. The ‘right kind’ is of the form g o (T>°%; — 11 (a),...,T>%, — .(a)),

where ¢ is a power series in r variables, and T;°1,; denotes the Taylor series of 1, about a.

81. Introduction and notation

By C Oo(Hd, R") we mean the Fréchet space of infinitely-differentiable functions from
R? to R”. The usual topology on C Oo(Hd, R") is metrisable, and a sequence f,, converges
to a function f in this topology if and only if the partial derivatives 8'f,, — ' f uniformly
on compact subsets of R?, for each multi-index 7. We abbreviate Coo(Hd, R) to Coo(Hd) ,
or just C'>° , when the value of d is clear from the context.

Suppose we take r functions 1,...,%, € Coo(Hd) and consider the real algebra
R[¢1,...,%,] that they generate. It is of interest to describe the closure of the algebra
in Coo(Hd). This problem was posed by I. Segal, about 1949 [N2, p.311]. The purpose of
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this paper is to describe the closure in the case when d = 1 and the functions 1,...,,
together separate points. The description we give is local, involving the Taylor series of
the functions.

We denote the algebras of polynomials and of formal power series in r variables by

R[z1,...,2,] and R[[z1,...,2,]] , respectively. For each a € R?, the Taylor series map
T : C*°(R?,R") - Rl[[z1,...,z4]]"

is continuous when R[[z1,...,z4]| is given the usual projective limit topology, and is an

algebra homomorphism when » = 1. For each k£ € 7, the Taylor polynomial map
T%: C*(R*,R") - R[z1,...,24]%,

where R[z1,...,z4]; denotes the space of polynomials of degree at most k, is also contin-
uous with respect to the usual topology on R[zi,...,z4]z. We abbreviate T to T*, and

we also use T* for the truncation map on power series:

R[[z1,...,z4]] = Rlz1,...,2z4]r,

E a;z' — E a;z’.

i[>0 0<[i|<k

T" .

By a classical theorem of Emile Borel, T is surjective, t.e. each formal power series is
the Taylor series of some C'*> function.

If p1,...,pr € R[[z1,...,24]] have p;(0) = 0, for all 7, and if ¢ € R[[z4,...,z,]], then
we may form the composition go(p1,...,p,). We denote the set of power series so obtained,
with p1,...,p, fixed and ¢ ranging over all of R[[z1,...,z.]], by R[[p1,---,p]]-

We observe that if f € COO(Hd,Hm), g € C*(R"™,R), and a € R?, then

T.5(go f) = (T y(wy9) o (T.° f — f(a)).
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This could be described as the higher order version of the Chain Rule.

We can now state the main result.

Theorem. Suppose ¥ = (¢1,...,%,) € C(R,R") is injective. Let f € C*°(R,R). Then

the following are equivalent:

(1) fe closcoo(H)val, cey s

(2) TFf € T*R[T*¥] whenever a € R and k € N;

(3) T.*f € R[TZ"¥ — ¥(a)]],Va € R;

(4) TFf € T*R[T*¥] whenever ¥'(a) =0 and k € N;

(5) T.°f € R[[ TP — ¥(a)]] whenever ¥'(a) = 0.

To illustrate the result, we mention a few simple consequences. These examples are
all well-known and classical, and indeed more can be said about them, as we shall explain

below. Some more elaborate applications are given in the Corollaries at the end of the

paper.

Examples. 1. The closure of R[z®] is precisely the set of those f € C°°(R) such that
F(0) = 0 unless 3 divides 3.

2. The closure of R[z?,z?] is the same as the closure of R[cos z, 2], and consists of all
functions with f'(0) = 0.

3. The closure of R[z®, z°] is the set of f with f'(0) = f"(0) = f(¥)(0) = f(**(0) = 0.

4. The closure of R[z® + z7,2°] is the set of f with f'(0) = f"(0) = f(v(0) =

F(0) ~ () £(0) = 0.

Remarks. 1. In case ¥ has no critical points, the result is a special case of Nachbin’s
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theorem [N1], which characterises the maximal closed subalgebras of C>°(M), for arbitrary
smooth manifolds M. The Whitney spectral theorem ([M],[T]) provides a description of
the closed ideals in C°°(M), and hence of those closed algebras of the form R1+ I, where I
is a closed ideal. Apart from these results, both pre-1950, the main previous result about
closed subalgebras of C*°(M) was Tougeron’s 1971 spectral theorem [T1]. When applied
to M = R, Tougeron’s theorem yields the special case of our theorem in which all the
critical points of ¥ are isolated and of finite order. Most of the work of the present paper
involves the detailed analysis of the set of accumulation points of the critical set of W.

2. Tougeron’s theorem is sufficiently general to give a full and satisfactory description
of the closure of the algebra generated by any finite collection of real-analytic functions
on R?, for any natural number d. In the particular case of real-analytic ¥, a good deal
more is known. Consider the following four function spaces associated toa ¥ : R —» R":

A={go¥:ge C*(R")},
B = closR|¥],

C = closA,

D={fecC®R):T®f € R[T*V¥ — ¥(a)]],Va € R}.

By (the classical) Lemma 8 below, A C B, so
AcCB=CcD.

In the present paper, we are focussed only on the approximation question: when is B=D
(or, equivalently, C=D)? Evidently, a sufficient condition would be that A = D. This
condition is not necessary, as was noted already by Glaeser [G] (see the first example after
Corollary 9 below). The problem of deciding when A = D has received a great deal of

6



study. This began with the paper of Whitney [W] on characterising the even functions as
those of the form f(z?), involved significant progress by Glaeser [G], and culminated in the
penetrating result of Bierstone and Milman [BM2] which relates A = D to semi-coherence
of the image of ¥. The result applies to proper real-analytic ¥, and extends to higher
dimensions. See also [BM1], [BMP], and forthcoming work of Bierstone and Milman in
the Annals of Mathematics. These results show, for example, that A = D holds in the
examples 1 to 4 given above. As far as the problem of deciding when B = (' is concerned,
these results do not advance on Tougeron’s.

The problem of deciding whether A = D for a given general (not necessarily analytic)
smooth, injective, proper ¥ has received little attention. The referee of this paper remarks
that A = D is probably true for ¥ : R — R’ that are proper, injective, and have only
critical points of finite order. This is a reasonable conjecture, and could probably be
approached by using the methods that work for analytic functions.

3. A result similar to our theorem holds (with essentially the same proof) for finitely
generated subalgebras of C'°° functions on the other 1-dimensional manifold, the circle.

The C* analogue also works (1 < k < 00), and is somewhat easier.

82. Notation and Definitions

We use N for the set of natural numbers and 7 for the set of nonegative integers,
N U {0}.

For a propositional function P(z), we say that P(z) holds for z near A if {z : P(z)}
is a neighbourhood of A.

E? denotes the set of accumulation points, or derived set, of E.
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Let f € C*(R,R). Then sptf denotes the support of f, i.e. R ~ intf~!(0). We say

that f is flat at a point a € R if all derivatives Z;{ (a) = 0(z > 1). Note that it does not

entail f(a) = 0. We say that f is locally-constant near aset E C RifVa € E Jr > 0 such
that f is constant on (a — r,a + r).
If p(z) = j:g’ Xiz' € R[[z]] is a power series, then ordp, the order of p, is inf{i : X; #

0}.
83. Tools
We gather here the lemmata we shall use to prove the theorem. The first is easy to

prove, and well-known.

Lemma 1. If S is a semigroup of non-negative integers under addition, g = g.c.d.(S) and

g > 0, then 3N € N such that kg € S whenever k € N and kg > N. n

Lemma 2. Let py,...,p, € R[[z]] and p;(0) = 0,Vi. Then the subalgebra

A =R[[p1,---,p/]]
is closed in R[[z]].

(This lemma holds in the more general situation where the p; are power series in
many variables, and it may be proved by a short inductive argument, or by appealing to
[C], section II, Lemma 7. We include the following argument for the one-dimensional case

because it has a constructive character, and the method is useful in working examples.)

PROOF. We may assume that p; has minimal order, say g, among the p;. If g # 400,
then A has only constants and the result is trivial, so we may assume g = +oo.
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Let S = {ord ¢ :¢t € A}. Then S is a sub-semigroup of (Z4,+). Let d = g.c.d.(9),
and let w = g/d. By Lemma 1, there exists T' € S such that T+ kd € S, Vk € N. Choose

Uty... Uy € R[[21,...,2,]] such that

w0 (p1,...,pr) =2 % 4 higher terms.

Foreach k € 7, let A}, = {Tkt 1t € A}. Then Ay is a linear subspace of the finite-
dimensional vector space R[z]; of all polynomials of degree at most k. It is therefore closed
with respect to the usual topology on R[z];. Note also that if power series t,, — ¢ in R[[z]],
then the truncations T*t, — T*t in R[z]}.

Suppose {qn}j:? C R[[z1,...,2,]] and ¢, o (p1,-.-,pr) — p as n T +oo, for some
p € R[[z]]. We have to show that 3f € R[[z1,...,z,]] such that p = f o (p1,...,pr)-

For each k € 7., we have T* (g, 0 (pi,..-,p+)) — T*p, hence T*p € Aj;. Thus
3fr € R[[z1,...,2,]] such that T*p = T* (fr o (p1,.-..,p-)). Typically, fi is highly non-

unique. Fix K =T + g, and pick some fx, as above. Then

p=frxo(pi,...,pr)+ ﬁ[(+1af:K+1 + higher order terms.

We proceed inductively to pick fr 41, fr+2,---, in a specific way.

Suppose f; has been chosen for some k£ > K, with

p=fro(pi,...,p;) + Brr12" T + higher order terms.

There are two possibilities.

Case 1°. Bry1 = 0. In this case, we take fri1 = fr.
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Case 2°. Bri1 # 0. In this case, k + 1 belongs to the semigroup S, because there exists

some f; , € R[[z1,...,2,]] such that

Tk+lp =Tk (fllc—|—1 o(pi,--- ,p-r)) >

hence
(fllc+1 - fk) o(p1,---,pr) = ﬁk+1$k+1 + -

Thus we may choose h € N such that
k+1—hg=T+1d
for some i € {1,...,w}. We then choose

k+1 = Jk k4121 Uy
f fi + Bryrz]

Then h |
fk+1 O(pl,-.-,p-r) = fk O(pl,...,p.r) —I_/Bk—|—1 (mg + ,..) (mT—F.ld_l_ ...)

:fko(pla"-ap-r)+,3k+1mk+1 + .-,

SO
Tk+1 (fk—|—1 0 (pla e ap'r)) = Tk+1pa

as required.
The key feature of this construction is that in either case fi4; is produced from f

by adding terms of order at least h, and

k+1—T—
S S RN
g

as k T +o00. Thus, given j € N there exists J = J(j) such that

T fr, =T f; Vk>J.
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Consequently, {f;},-, converges in R[[z1,...,2,]] to a limit f, and for each k € N
T*(fo(prs---sp0)) = T* ((T"f) o (p1,- -, pr))

— Tk ((kaj(k)) o(piy--- ap-r))

= Tkpa

hence

fo(pi,---,pr) = p.

Corollary 3. Let p1,...,p, € R[[z]] and p;(0) = 0 Vi. Let f € R[[z]]. Then the following

are equivalent:

(1) fe H[[pla-"ap'r]];
(i) T*f € T*R[p1,...,pr],VEk EN;

(iii) T*f € T*R[T*p,...,T*p,],Vk € N.

Lemma 4. Suppose that f € C*(R,R),0<n < §,a €R, f is flat at a,
dist(z, f'1(0)) < ,Vz € (a,a + ),

k € N, and

M = max{|f**V(2);a < z < a + 6}.

Then for each z € [a,a + §], we have

k¥ Mn*§
k!

kk—|—1—-iM,r]k—|—1—-i
(k+1—1)!

[f(z) — f(a)] <

, and

|F ()| < (for 1 <1 < k).
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PROOQF.If § < kn, then we apply Taylor’s theorem with Lagrange’s form of the remainder.

Since f is flat at a, we get (for z € [a,a + §] and suitable ¢;):

_ f(k+1)(£0)(m —a)k+1 M-+
£(@) - £(@)] = e ‘s LR
and, for 1 <1 < k,
| [ FETDE (@ — a)F Mgk~
‘f (m)‘_ (k+1_ 1) Seria)
ME*n*§
£@) ~ £(@)] < G
and
PIRPRVENIE

(B+1—2)!
These easily yield the desired estimates, in this case.

So suppose kn < §. Then we may choose k distinct points &1,...,&k, in the interval
— (o~ knyz + kn) N (ara 1 ),

at each of which f' = 0. By Newton’s interpolation formula,
fl(m) = (m - 51) s (m - fk)fl[fla' .- afkam]

_(—8). (- 8
k! ’

(cf. [H], p.64) so

£y < B

By applying Rolle’s theorem, we see that for 2 < i < k, f(*) has k 4+ 1 — 7 zeros in I, and
the same argument shows that

(kn)k+1—-iM

‘f(-i)(m)‘ < m
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Finally,
|f(z) — f(a)| =

/ax (@) dt‘

k¥ Mn*§
-k

Thus we have the desired estimates in this case also, and the proof is complete. ]

The next lemma is well-known. Compare, for instance, [T1: Chapter IV, Lemme 2.1.,

p.72].

Lemma 5. There are universal constants ¢, > 0 with the following property. Given § > 0
there exists ¢ € C°(R,R) such that 0 < ¢ <1, $ = 0 near (—o0,0], $ = 1 near [§,+00),

and

d'é

dz*

Ck
<% Ykl

Lemma 6. Let E C R be closed and f € C>®(R,R). Suppose each point of E is a critical
point of f. Let F' be the set of points of E at which f is flat. Then f belongs to the closure
in C™ of the set of functions g € C'*° such that
(1) g is locally constant near F,

and

(2) for each a € E, we have that g is flat at a, or T;°g = T:°f.

PROOF. Observe that f is flat on E¢, so E? C F.
Fix k € N and R > 0. We will show that given ¢ > 0 there exists ¢ € C> having
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properties (1) and (2) and such that

() () — £
Jnax sup_ g (2) — (=) <e

This will suffice.

Since modifications to f off [~ R, R| are of no consequence, we may alter it so that
it is locally-constant near each point of E ~ [—R, R]. In fact, if f is flat at — R, we may
assume f(z) = f(—R) for all # < —R, whereas if f is not flat at —R, then Ja > 0 such
that EN(—R — a,—R) = 0, and we may modify f to have f(z) = f(—R — «) for all
¢ < —R — o. Similar modifications may be made on [R,+00).

Let Fr = FN[—R, R]. Let

M = max sup ‘f('i) T ‘
0<:<k+1 —R—1<z<R+1 ( )

Fix § € (0, 7).

Each connected component of F; is a singleton or a closed interval of positive length.
For each such component C = [a, b] consider the open interval I = (a — g, b+ g) . Select a
finite number I4,..., I, of these intervals, corresponding to components C4,...,C, of Fg,
covering Fr. We may suppose that no I; is contained in the union of the rest, and that
they are ordered so that, with I; = (¢;,d;), we have ¢; < ¢;41.

We now carry out a process to ‘disjointify’ the I;.

Suppose cj;1 < d; for some j.

If (¢j+1,d;) ¢ E, pick points d; < ¢/, belonging to the same connected component
of (¢j+1,d;) ~ E, and replace I; by (c;,d};) and I 11 by (¢} ,d;+1)-

If ¢j+1 < d; and (c¢j41,d;) C E, then there is a connected component A of E?
containing [¢;41,d;], and we must have A # C; (since d; ¢ C;). Since d; is no more than
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distance g from C;, we see that (d; — g, d;) ~ E is nonempty. Pick d} < c}+1 belonging to
the same component of (d; — g, dj) ~ E, and replace I; by (c;,d}) and I;11 by (¢}, ,d;j+1)-

If ¢;41 = d;, then it belongs to [—R, R|, and either it is not a point of E, or it is an
isolated point of E, since the I;’s together cover E? N[~ R, R]. In either case we may pick
points c; 1 < d} in a single component of (d; — g, d;) ~ E and proceed as in the previous
case.

The effect of this modification is to produce a covering {I;} of Fr such that the sets
closI; are pairwise disjoint, I; contains a component C; of Fg, and no point of I; is more
than § away from C;. Also, ¢; ¢ E for j > 1 and d; ¢ E for j < n.

Let

o; =inf Fp N I, 'yj:f(aj),

B =supFrNI; & = f(B))

In what follows, Iy and I,, may need special treatment, so assume for the moment that

j#1,j #n. Then

c; < oa; < f;<d;.

We consider in turn the sets (¢;,a;) ~ E, (;,8;) ~ E, and (8;,d;) ~ E.
The open set (¢j,o;) ~ E is nonempty, so the supremum of the lengths of its
component intervals is positive. Denote this supremum by 7, , and select an interval

(r7,87) C (¢j,a;) ~ E with s7 —r7

7 =mn; . Let 6; = a; —c;. Applying Lemma 4, we see

that

© (o)~ < EL
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k+1—-iM(77f)k+1—-i
J
(k+1—19)!

(4) ‘f‘”(m)‘ <k (1<i<k),

whenever z € (¢;, a;).

Similarly, in the nonempty open set (3;,d;) ~ E, we select an open interval (r}', .s;'

whose length is the supremum 17;' of the lengths of such intervals, and we let 5;' =d; —B;.

Then we have

K*M(n) )k 8!

|f($)—5]|§ L! 9

kk+1—-iM(77}|—)k+1—-i
(k+1—4)

£9(@)| < (1<i<k),

whenever z € (8;,d;).
Now it may happen that a; and §; belong to the same component of Fr. This occurs

precisely when C; = [a;,(8;] and I; has points of Fp other than the points of C;. We call

this the “two-interval case”, and otherwise we say we have the “three-interval case”.
b

In the three-interval case, (o;,3;) ~ E is a nonempty open set. Let 17? be the supre-

mum of the lengths of its components, and select (r?, 32) C (ej,8;) ~ E with 32 —1“2 > 17?.

Let 5? = f; — ;. Then

k*M(n])* 6]
|f(2z) — ;] < +,

k" M(n3)* 8]

fl@) — 8] < =

kk+1—-iM(n?)k+1—-i
(k+1—4)

‘fu)(m)‘ < (1<1i<k),

whenever z € (a;, ;).
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By Lemma 5 we may select ¢, € " such that

0<¢; <1,
¢, = 0 near (—oo,r; ],

J

- _ +
¢, =1 near [r], +00),

(67)0] < 2, viz o,
(77]‘ )!

Similarly, we select functions ¢j’, qﬁ? which go from 0 to 1 across (r}', .sj') and (r?, 32), and
have bounds ‘ .

(¢+)(z) < G

‘ ! (n)

. C;
¢° | < .
‘( 2 (n3)’

Now consider j = 1. It is possible that (¢1,1) C E. This occurs precisely when
¢; < —R and [¢;,—R] C E. If this is the case, then construct ¢ and (if necessary) ¢!
exactly as before, but take ¢ = 1. If, on the other hand, (¢1,a1) ~ E # 0, then no special
treatment is needed: just choose qﬁfc and (if necessary) ¢ in the usual way.

Finally consider j = n. If (8,,d,) ¢ E, then proceed as usual. Otherwise, choose ¢
and (if necessary) ¢ as usual, but take ¢, = 1.

In the two-interval case, let
hj=¢; (1—¢7)(f —7i)-
In the three interval case, let
hi=¢; (1= N(f =) + 651 — ¢])(f = §))-

Let



Then gs € C*. Each point a € Fg belongs to some [e;,3;]. Now h, =0 on I, Vr # j. If
the two-interval case obtains, then h; = f —~; near [a;,(;], and hence gs = v, is constant
near a. In the three-interval case, h; = f — 7, near [aj,r?], h; = f — 6; near [sg,ﬁj], and
a € [oj,B3] ~ (r?,sg), so near a we have either gs = v; or gs = §;. Thus gs is locally
constant near F'i.

Now consider a point a € E ~ Fpr. Carefully examining all the possible cases, we
note that each function ¢, ¢j’, qﬁ? is identically 0 or identically 1 on a neighbourhood
N of a, and hence, on N, h; equals one of 0, f —v; or f — §;. Moreover, the h; have
pairwise-disjoint supports, so gs equals one of f,v1,61,...,7n,0,, identically on N. Thus
Togs = ga(a) or T2°.

It remains to estimate |f(?) — g((s'i)|, for 0 <¢ < k. Fix z € [—R, R]. We have
i) () (o — 40 4+
|f( () — g5 (z)| = 121]3;1 |hj (z)| = lg?lgxn{Aj ’AjaAj }

where

)

_ d
Aj = sup ‘Equ (f =)

(7 57)

d.i d-i

0 0 0

4= oo [l =)+ [l =60
d

PR e )

The three estimates are similar, so we discuss only the first. As is well-known, sup | f|
and sup |f(¥)| together control the intermediate sup |f(")|, so we need only consider i = 0

and 7 = k. The estimate (3) trivially yields

|67 (f — ;)| < const - §,
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since §; < é. By Leibnitz’ formula
k

(Z—k¢;(f —;) = Z (f) (f — ’)’j)(i)(qu_)(k_'i).

1=0

By (3), we have, where z € (r; ,s; )

(F(2) = 1,)(67) D (@) < const -,
and for 1 <4 < k,
‘f(”(m)(¢;)<’“"i>(m)‘ < const - n; < const - 6.
Thus
|A7 | < const - 6.

We conclude that

(D(p) — g'® < .5
org-?gxk_;;ng‘f (z) — g5 '(z)| < cons

where the constant depends on R and k, but not on §. Thus we obtain the desired estimate

by taking é sufficiently small. ]

Lemma 7. (Factorisation Lemma). Let ¥ : R? - R” be C™ and injective. Suppose
fe Coo(Hd,H) is locally-constant near the critical set of U. Let K C R be compact.

Then there exists ¢ € C°(R",R) such that f =¢o ¥ on K.

PROOF. Let U be an open ball in R?, containing K. The map ¥ is a homeomorphism of U
onto V = ¥(U). Let E be the critical set of ¥. Then ¥ is a diffecomorphism of U ~ E onto
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the smooth imbedded d—dimensional submanifold V' ~ ¥(E) C R". For y € ¥(U), let
z € U have ¥(z) = y and define ¢(y) = f(z). Then ¢ is a C> function on V ~ ¥(FE) and
is locally-constant on a relative neighbourhood of ¥(ENU) in V. The existence of a O™
extension of ¢ to R" is a local question, so it is clear that ¢ has such an extension (since
smooth functions extend from submanifolds, and constants are easy to extend). This is

enough. ]

The last lemma is a well-known consequence of de la Vallée Poussin’s extension of

Weierstrass’ polynomial approximation theorem to C* approximation.

Lemma 8. Let ¥ = (¢1,...,%,) € COO(IF\?d,HT) and ¢ € C°(R",R). Then ¢ o ¥ belongs

to the closure of R[4, ...,%,] in Coo(Hd, R). "

84. Proof of Theorem

Let U = (¢1,...,%,) : R > R" be injective. Fix f € C*(R,R).

(1) = (2): This is immediate from the continuity of the map f ~ T* f and the fact

that T*R[T*¥] is closed in R[z]y.
(2) = (3) and (4) = (5) follow from Corollary 3.
(2) = (4) and (3) = (5) are obvious.

It remains to prove that (5) = (1).
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Figure: Pattern of Proof

Suppose f has

T.;°f € RI[T,;*¥ — ¥(a)]]

whenever ¥'(a) = 0.

Let E denote the set {a € R : ¥'(a) = 0} of critical points of ¥. Then f is flat on
E?. By Lemma 6, we may approximate f in C> by functions g that are locally-constant
near E?, and still have T>°g € R[[T>¥ — ¥(a)]],Va € E. So it suffices to show that we
can approximate such a function g by elements of R[41,...,%,]]. Fix such a g.

Fix R > 0. Since g is locally-constant near E¢, we may pick 5 > 0 such that g is
constant on (a —7n,a + 7) for each a € EN[~R, R]. Let

N = U (a —n,a+n).
a€E1A[—R,R]

Then N is a finite union of open intervals, on each of which g is constant, and EN[—R, R] ~
N is discrete, and hence finite. Let the open intervals be Jy,...,J,,. If any endpoint of a

Ji belongs to E, then we may shrink J; by at most 1 to avoid this. In this way we obtain
En[—-R,R)=A{a1,...,a;} U(NNE)

where C' = closN is a compact set that contains the 7 neighbourhood of E‘N[-R,R), g
is locally-constant on N, and ENbdyN = 0.
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For each 1, pick p; € R[[z1,...,z,]] such that
T,7g=pio(T,;¥ — ¥(a;)).

By Borel’s theorem, we may choose ¢; € C>(R",R) such that T\I?C()ai)‘ﬁi = p;.
The points ¥(a;),...,¥(a;) are distinct, and lie outside the compact set ¥(C), so we
may choose x; € C>(R",R) such that x; = 1 near ¥(a;) and x; = 0 near ¥(C)U {¥(a;) :

j # 1}. Replacing ¢ by xi®;, if need be, we may assume that

spt¢; Nsptép; = 0, whenever 1 # j,

and

sptep; N U(E?) = 0, Vi.

Now let h = g — Z_f:l ¢ioW. Then h € C>(R), h is locally-constant on N, and h
is zero and flat at each point of (E N [—R, R]) ~ N. Applying Lemma 6 with F replaced
by E N [—R, R], we see that h may be approximated in C>° by a sequence h,, of functions
that are locally-constant near E N [—R, R|. By the Factorisation Lemma, h,, = p, o ¥
near [— R, R], where p, € C°(R",R). By Lemma 8, p, o ¥ may be approximated in C*>
by polynomials in (¢1,...,%,), hence h can be so approximated on [—R,R]. Another

application of Lemma 8 to ¢; o ¥ then yields the result. ]

The following corollary is worth noting.

Corollary 9. If ¥ = (¢1,...,¢,) € C(R,R") is injective and is flat on the critical set
E of U, then R[¢1,...,v,] is dense in the set {f € C*°(R) : fis flat on E}. "
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For instance, taking

¥(e) = {Sgn(m)exp (1) =#0
0, =0,

we observe that \/m belongs to the closure in C>° of R[]. This shows that, even in the
point separating case, the set {¢o(1,...,%,) : ¢ € C°(R,R")} may be a proper subset of
closcR[1,...,%,]. A very similar example (not injective) was already noted by Glaeser
[G].

To give an example having a substantial critical set, we could take any injective C
function ¥ : R — R that is flat precisely on the classical Cantor set, C'. Such a function
may be obtained, for instance, by taking any function ¢ : R — [0, +00), smooth off C' and
vanishing on C, and satisfying a Holder condition with some positive exponent, and then
letting

exp(—¢(z)),= ¢ C,
p(z) =
0,z € C,
w@) = [ a0t
The corollary then says that each function flat on C belongs to the closure in C* of R[#].

Finally, we record a regularity result for these algebras.

Corollary 10. Suppose ¥ = (¢1,...,%,) € C®(R,R") is injective. Let A and B be
disjoint closed subsets of R. Then f € closc~R[¢1,...,%,] such that f = 0 on A and

f=1onB.
(This result is trivial to prove if we add the hypothesis that ¥ be proper.)

PROOF. Let E be the critical set of ¥. Then F is closed and nowhere dense. It is not
difficult to construct a function f € C>(R,R) such that f =0on 4, f =1 on B, and for
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each a € FE there exists r > 0 such that f =0on (a —r,a+7) or f=1o0n (a —r,a+r).

By corollary 9, f belongs to the closure of R[¢1,...,%,]| in C*. ]
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