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Abstract. We give a very short proof, using analysis, of a fact
about the denominators of certain binomial coefficients.

1. Introduction

The binomial coefficients are defined by(
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
,

for nonnegative integral k and any α. Usually, α is a real or complex
number, but the definition makes sense if α belongs to any field of
characteristic zero. The following is well-known:

Theorem 1. The binomial coefficients
(
n
k

)
are positive integers, for

integers n, k with 0 ≤ k ≤ n. �

The usual proof uses the Law of Pascal’s Triangle, and induction.

The binomial coefficients
(
r
k

)
, with rational r, occur in the Maclaurin

series expansion of (1 + x)r (convergent for real or complex x with
|x| < 1). For instance,

√
1 + x =

∞∑
k=0

(
1
2

k

)
xk.

Calculating a few terms, one finds that the series begins

1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

64
x4 · · · .

The coefficients are not integral (or nonnegative), but when common
factors are cancelled (i.e. they are expressed in reduced form m/n,
with m ∈ Z, n ∈ N, and gcd(m,n) = 1), it is remarkable that only
powers of 2 occur in the denominators. This is not an accident: the
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pattern continues forever. We have the following, slightly less well-
known result:

Theorem 2. Let r ∈ Q and 0 ≤ k ∈ Z. Suppose that r = m/n in
reduced form. Then the binomial coefficient

(
r
k

)
has reduced form s/t,

where t is a product of powers of primes that divide n.

For instance, in the expansion of (1 + x)
5
6 , the coefficients all take

the form s/(2a3b), for some s ∈ Z.

The theorem may be proved using elementary number theory, for
instance by reducing it to the statement that if d, k ∈ N and r is the
largest factor of k! prime to d, then r divides the product of the terms
of each k-term arithmetic progression of integers having step d.

The purpose of this note is to give a very short soft proof of Theorem
2, by using a little analysis. Specifically, the proof uses the field Qp

of p-adic numbers. For the benefit of readers who have not met these
numbers, we give a short introduction in the next section, and then
give the proof in the final section.

2. The p-adic Numbers

For a prime p, the p-adic valuation of a rational number is defined
by setting ‖0‖p = 0 and ∥∥∥∥±rpns

∥∥∥∥
p

= p−n

whenever r ∈ N, s ∈ N, and n ∈ Z with gcd(r, p) = gcd(s, p) = 1. For
instance,

‖300‖2 =
1

4
, ‖301‖2 = 1, and ‖ 1

300
‖2 = 4.

Thus some numbers that have large absolute value have small valua-
tions, and vice-versa. Also, numbers that have small valuations with
respect to one prime may have large valuations with respect to another.

The p-adic metric on the set Q is defined by setting the distance be-
tween two rationals a and b equal to ‖a−b‖p. You can verify easily that
this does, indeed, define a metric. In particular, the triangle inequality
follows from a stronger form known as the ultrametric inequality:

‖a− b‖p ≤ max{‖a− c‖p, ‖c− b‖p}.
The space Qp of p-adic numbers is the completion of Q with respect to

the p-adic metric. It is a complete metric field, i.e. the field operations
are continuous. One can show (although we do not need this for the
proof below) that Qp has the same cardinality as R, and that it is
locally-compact and totally-disconnected.
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The closure of Z in Qp is denoted Zp, and called the set of p-adic
integers. It is a compact, totally-disconnected metric space, and an
integral domain, and Qp is its quotient field.

From the point of view of number theorists, there is little to choose
between R and any of the Qp. They are all more-or-less equally-
interesting ways to complete the set of rationals. For instance, if one
is interested in solving a Diophantine equation such as x3 + y3 = z3 for
integers, then it is necessary that the equation have a solution in each
Zp and in R. For some equations, the converse holds — such a result
is called a “Hasse Principle”.

Each infinite series of the form
∞∑

n=0i

anp
n

with an ∈ Z is convergent in p-adic metric, and so represents some
p-adic integer. For instance, in 2-adic metric we have the formula

1 + 2 + 4 + · · ·+ 2n + · · · = −1,

which may be found in Euler’s work. More generally, for any prime p,

(p− 1) + (p− 1)p+ (p− 1)2p+ · · · = −1

in p-adic metric. From this we deduce that every p-adic integer is the
limit of a sequence of positive integers.

A non-integral rational number may be a p-adic integer. For in-
stance,

1 + 3 + 32 + 33 + · · · = −1

2
in 3-adic metric. More generally, it is not hard to see that a rational
number r with reduced form m/n belongs to Zp if and only if p does
not divide n.

3. The Proof

Theorem 3. If p ∈ N is prime, a ∈ Zp and 0 < k ∈ Z, then
(
a
k

)
∈ Zp.

Proof. Fix k ∈ Z, k ≥ 0. The function

f : x 7→
(
x

k

)
is a polynomial with coefficients in Q, and hence it is continuous, as
a function from Qp into Qp. (This just depends on the fact that Qp

is a metric field.) Choose a sequence (an) ⊂ N with an → a in p-adic
metric. Then f(an) ∈ N ⊂ Zp, and hence f(a) = limn f(an) ∈ Zp,
since Zp is closed. �
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We remark that a rational number r is an integer if and only if
r ∈ Zp for each prime p, and so this theorem may be regarded as a
‘local version’ of Theorem 1. The proof shows that the local version
follows at once from Theorem 1, and a simple bit of topology.

Proof of Theorem 2. Let r = m/n, k, and
(
r
k

)
= s/t be as in the state-

ment. Suppose a prime p divides t. If p does not divide n, then r ∈ Zp,
so s/t ∈ Zp, which is false. Thus each prime that divides t divides
n. �
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