INTEGRAL BINOMIAL COEFFICIENTS
ANTHONY G. O'FARRELL

ABSTRACT. We give a very short proof, using analysis, of a fact
about the denominators of certain binomial coefficients.

1. INTRODUCTION

The binomial coefficients are defined by
(a) Cala—1)---(a—k+1)
k k! ’
for nonnegative integral £ and any «. Usually, « is a real or complex

number, but the definition makes sense if a belongs to any field of
characteristic zero. The following is well-known:

Theorem 1. The binomial coefficients (Z) are positive integers, for

integers n, k with 0 < k < n. O
The usual proof uses the Law of Pascal’s Triangle, and induction.

The binomial coefficients (l’;), with rational r, occur in the Maclaurin
series expansion of (1 + )" (convergent for real or complex x with
|z| < 1). For instance,

Calculating a few terms, one finds that the series begins

1 1, 1 4 5 4
1—|—2x 8:6 —|—16:1: 6491:---.
The coefficients are not integral (or nonnegative), but when common
factors are cancelled (i.e. they are expressed in reduced form m/n,
with m € Z, n € N, and ged(m,n) = 1), it is remarkable that only

powers of 2 occur in the denominators. This is not an accident: the
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pattern continues forever. We have the following, slightly less well-
known result:

Theorem 2. Let r € Q and 0 < k € Z. Suppose that r = m/n in
reduced form. Then the binomial coefficient (2) has reduced form s/t,
where t 1s a product of powers of primes that divide n.

For instance, in the expansion of (1 + x)%, the coefficients all take
the form s/(2%3%), for some s € Z.

The theorem may be proved using elementary number theory, for
instance by reducing it to the statement that if d,k € N and r is the
largest factor of k! prime to d, then r divides the product of the terms
of each k-term arithmetic progression of integers having step d.

The purpose of this note is to give a very short soft proof of Theorem
2, by using a little analysis. Specifically, the proof uses the field Q,
of p-adic numbers. For the benefit of readers who have not met these
numbers, we give a short introduction in the next section, and then
give the proof in the final section.

2. THE p-ADIC NUMBERS

For a prime p, the p-adic valuation of a rational number is defined
by setting ||0]|, = 0 and

= p_n
P
whenever r € N, s € N, and n € Z with ged(r, p) = ged(s,p) = 1. For
instance,

+rp™
s

1 1

13002 = 7, [I130L]l2 = 1, and |25 ]2 = 4.
Thus some numbers that have large absolute value have small valua-
tions, and vice-versa. Also, numbers that have small valuations with
respect to one prime may have large valuations with respect to another.

The p-adic metric on the set Q is defined by setting the distance be-
tween two rationals a and b equal to |[a—b||,. You can verify easily that
this does, indeed, define a metric. In particular, the triangle inequality
follows from a stronger form known as the ultrametric inequality:

la = bll, < max{lja —cll,, llc = bll»}-

The space Q, of p-adic numbers is the completion of Q with respect to
the p-adic metric. It is a complete metric field, i.e. the field operations
are continuous. One can show (although we do not need this for the
proof below) that @, has the same cardinality as R, and that it is
locally-compact and totally-disconnected.
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The closure of Z in Q, is denoted Z,, and called the set of p-adic
integers. It is a compact, totally-disconnected metric space, and an
integral domain, and Q, is its quotient field.

From the point of view of number theorists, there is little to choose
between R and any of the Q,. They are all more-or-less equally-
interesting ways to complete the set of rationals. For instance, if one
is interested in solving a Diophantine equation such as 22 + 3% = 23 for
integers, then it is necessary that the equation have a solution in each
Z, and in R. For some equations, the converse holds — such a result
is called a “Hasse Principle”.

Each infinite series of the form
oo

n
E anp
n=0:¢
with a, € Z is convergent in p-adic metric, and so represents some
p-adic integer. For instance, in 2-adic metric we have the formula

L+2+4+- 4+ 274 = —1,
which may be found in Euler’s work. More generally, for any prime p,
pP-D+@-Vp+p-1)p+ - =-1

in p-adic metric. From this we deduce that every p-adic integer is the
limit of a sequence of positive integers.
A non-integral rational number may be a p-adic integer. For in-

stance,

1
1+3+32+33+---:—§

in 3-adic metric. More generally, it is not hard to see that a rational
number r with reduced form m/n belongs to Z, if and only if p does
not divide n.

3. THE PROOF
Theorem 3. Ifp € N is prime, a € Z,, and 0 < k € Z, then (Z) € Ly.
Proof. Fix k € Z, k > 0. The function

o )

is a polynomial with coefficients in QQ, and hence it is continuous, as
a function from Q, into @Q,. (This just depends on the fact that Q,
is a metric field.) Choose a sequence (a,) C N with a,, — @ in p-adic
metric. Then f(a,) € N C Z,, and hence f(a) = lim, f(a,) € Z,,
since Z,, is closed. 0
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We remark that a rational number r is an integer if and only if
r € Z, for each prime p, and so this theorem may be regarded as a
‘local version’ of Theorem 1. The proof shows that the local version
follows at once from Theorem 1, and a simple bit of topology.

Proof of Theorem 2. Let r =m/n, k, and (}) = s/t be as in the state-

ment. Suppose a prime p divides ¢t. If p does not divide n, then r € Z,,

so s/t € Z,, which is false. Thus each prime that divides ¢ divides

n. U
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