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ABSTRACT

It follows from a theorem of Dolzhenko, that if a compact set in the plane has zero

Hausdorff measure with respect to the measure function h(r) = r2 log(1/r), then it is

removable for analytic functions of the Zygmund class. In this paper it is shown that

there is a compact set N in the plane such that N has zero Hausdorff measure with

respect to each measure function h(r) that is o
(
r2(log(1/r)) 1

2
)

and N is non–removable

for some analytic function of the Zygmund class. Some related results of a real–variable

nature are obtained.

1. Introduction

A function f : Rd → C belongs to the Zygmund Class (f ∈ ZC on Rd) if f is

continuous on Rd and there exists κ > 0 such that

|f(z + h)− 2f(z) + f(z − h)| ≤ κh

whenever z, h ∈ Rd. See [9].

This note is about removable singularities for analytic functions that belong to ZC

on the plane R2 = C. We say that a compact set K ⊂ C is ∂̄–ZC–null if for each open

set U ⊂ C, each function f ∈ ZC that is analytic on U ∼ K is actually analytic on the

whole of U .
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We define A(C ∼ K) to be the class of functions f ∈ ZC that are analytic on

C ∼ K.

Theorem 1. Let K ⊂ C be compact. Then K is ∂̄–ZC–null if and only if A(C ∼ K)

consists only of affine functions z 7→ α + β · z.

Nguyen [5] proved that if K has positive area, then there exists a Lip1 function

which is analytic off K, and not entire. Thus K is not ∂̄–ZC–null. Thus area zero is

necessary for ∂̄–ZC–nullity. He also showed by example [1986] that zero area is not

sufficient for ∂̄–ZC–nullity.

One may ask about the relation between ∂̄–ZC–nullity and Hausdorff contents other

than area. Let us denote by Mh the Hausdorff content corresponding to the measure

function h : [0,∞) → [0,∞), i.e. for E ⊂ C, Mh(E) denotes the infimum of sums

∞∑
n=1

h(diamBn)

taken over all countable coverings {Bn} of E by open (or by closed) balls. In 1964

Dolzhenko [1] showed the following.

Dolzhenko’s Theorem. Let f : C → C have modulus of continuity ωf (δ) and be

analytic off a compact set K having Mh(K) = 0 for the measure function h(r) = rωf (r).

Then f is analytic on C.

Since we know [9] that each function f ∈ ZC has

ωf (δ) ≤ κfδ log
1
δ
,

we deduce that the condition Mh(K) = 0, with h(r) = r2 log 1
r is sufficient for ∂̄–ZC–

nullity of K. Since Mh(K) = 0 with h(r) = r2 is not sufficient for nullity, we may ask

where, between r2 and r2 log(1/r), the break occurs. We will show the following.

Theorem 2. Nguyen’s example N has the following properties:

(1) N is not ∂̄–ZC–null;
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(2) Mh(N) = 0 whenever

h(r) = o

(
r2

(
log

1
r

) 1
2

)
.

Thus the question is now: where, between h(r) = r2 log(1/r) and

h(r) = o
(
r2 (log(1/r))

1
2

)
does the condition Mh(K) = 0 cease to be sufficient for ∂̄–ZC–nullity of K?

As a by–product we observe a few results about functions that satisfy the Zygmund

condition on the real line. First, a removable singularities result for the operator d
dx in

place of ∂̄. Solutions of df
dx = 0 are locally constant, so the result takes the following

form.

Theorem 3. There is a compact set K ⊂ R and a function f : R → R, such that

(1) there exists κ > 0 with |f(x + h)− 2f(x) + f(x− h)| ≤ κh whenever x, h ∈ R;

(2) f is constant on each interval contained in R ∼ K;

(3) f is not constant;

(4) Mh(K) = 0 whenever h(r) = o
(
r (log(1/r))

1
2

)
.

The set K we use is, in fact, an example constructed by Kahane [1969]. Indeed,

it should be remarked that Nguyen’s construction is essentially a higher–dimensional

extension of Kahane’s idea.

In the other direction, we observe the analogue of Dolzhenko’s Theorem for one

dimension:

Theorem 4. Let f : R → C be locally–constant off a compact set K ⊂ C having

Mh(K) = 0 for the measure function h(r) = ωf (r). Then f is constant on R.

Combining this with the example of Theorem 3, we obtain the corollary that there

exists a function f ∈ ZC on R whose modulus of continuity has

ωf (δ) 6= o

(
δ

(
log

1
δ

) 1
2

)
.
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We note that Shapiro has proved that there is a Zygmund smooth function f on

R such that

|f(x + h)− 2f(x) + f(x + h)| = O
(
|h|
(
log(1/|h|)− 1

2

))
and f is locally–constant off a set of Lebesgue measure zero. This is somewhat similar–

looking to Theorem 2, but is logically independent of it. There are also other construc-

tions of singular ZC functions in one dimension, due to Piranian [7] and (indirectly) to

Keldysh and Lavrentiev (cf. [2]).

In Section 2 we review the constructions of Kahane and Nguyen, and in Section 3

we prove the results.

2. The constructions of Kahane and Nguyen

(2.1) Kahane’s construction is designed to produce a nonconstant, monotonic, Zyg-

mund class function on [0,1] whose derivative exists and vanishes on an open set of

measure 1.

The construction is as follows.

Denote by w0 the line segment [0,1] and by wp
j the intervals of the form

[p4−j , (p + 1)4−j ] contained in w0. He constructs a sequence of measures µj and their

supports Kj .

Let µ0 be the Lebesgue measure on w0.

The measure µj is to be proportional to the Lebesgue measure on each wp
j . Let

Dj(w
p
j ) denote the density of µj on wp

j , and Kj its support, that is the union of the

wp
j ’s with Dj(w

p
j ) 6= 0.

To obtain µj+1 from µj he divides each w = wp
j , contained in Kj , into four equal

subintervals, w1, w2, w3, w4 (these are wq
j+1’s) and puts

Dj+1(w1) = Dj+1(w4) = Dj(w)− 1

Dj+1(w2) = Dj+1(w3) = Dj(w) + 1.
(1)
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Finally, he defines µ to be the weak–star limit limj µj and K = ∩jKj .

Observe that K is the collection of all the points x =
∑∞

j=1 xj4−j (where x ∈

{0, 1, 2, 3}) such that

1 +
k∑

j=1

ε(xj) > 0 (k = 1, 2, · · ·) (2)

where ε(0) = ε(3) = −1 and ε(1) = ε(2) = 1.

Let f(x) = µ([0, x]) be a primitive of µ. Kahane showed that f ∈ ZC. We reproduce

the argument for the reader’s convenience:

For each interval I, denote the length by |I| and put D(I) = µ(I)
|I| . Then D(wp

j ) =

Dj(w
p
j ) for all the intervals wp

j , and it can easily be shown that for two intervals w′
j and

w′′
j having an end point in common

|D(w′
j)−D(w′′

j )| ≤ 2.

Given an interval I, suppose j is the smallest integer such that 4−j ≤ |I|.

Denote the union of the wp
j contained in I by Sj , the union of the wp

j+1 contained

in clos(I ∼ Sj) by Sj+1, the union of wp
j+2 contained in clos(I ∼ (Sj ∪ Sj+1)) by Sj+2,

and so on.

We remark that each Sj+k is the union of at most 6 wp
j+k’s. (figure 1).

With the above notation we have

µ(I) = µ(Sj) + µ(Sj+1) + · · ·

=
∑

wp
j
⊂Sj

|wp
j |D(wp

j ) +
∑

wp
j+1⊂Sj+1

|wp
j+1|D(wp

j+1) + · · ·

|I| =
∑

wp
j
⊂Sj

|wp
j |+

∑
wp

j+1⊂Sj+1

|wp
j+1|+ · · · .

(4)

Suppose w′
j−1 and w′′

j−1 intersect I (there exists at least one and at most two of

them). In the sum in (4) we have

|D(wp
j )−D(w′

j−1)| ≤ 1 if wp
j ⊂ w′

j−1,

|D(wp
j )−D(w′

j−1| ≤ 3 if wp
j ⊂ w′′

j−1,
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and for all k

|D(wj+k)−D(w′
j−1)| ≤ 3 + k.

Then
|µ(I)− |I|D(w′

j−1)| ≤ 3
∑

|wj |+ (3 + 1)
∑

|wj+1|+ · · ·

≤ 3|I|+ 6
∞∑

k=1

k4−j−k ≤ 6|I|

If now I and I ′ are two contiguous intervals of equal length, we can choose the

same w′
j−1 for both. Then

|µ(I)− µ(I ′)| ≤ 12|I| (5)

This implies that

|f(x + h) + f(x− h)− 2f(x)| ≤ 12h (6)

whenever x is real and h is greater than zero. Thus f ∈ ZC.

Kahane showed that K has length zero by relating the construction of K to the

standard one-dimensional discrete random walk. We shall elaborate upon his argument

in Section 3.

(2.2) Nguyen’s purpose was to construct a compact set N ⊂ C of zero area and a

probability measure ν, supported by N , such that its Cauchy transform

ν̂(z) =
∫

dν

ζ − z
(ζ)

belongs to the Zygmund class.

In describing his construction, we shall denote Lebesgue measure in the plane by

m.

He starts with a unit square Q in the complex plane. For n = 1, 2, 3, · · · let Gn be

the grid of closed octadic squares of size 8−n which are contained in Q. The members

of Gn will be denoted by Qn
j where j = 1, 2, 3, · · · (64)n.
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He divides the squares of each grid into two types, called red and green squares.

The red squares of G1 consist of the 28 squares that intesect the boundary bdyQ and

any other 4 squares chosen at random in the interior of Q. The remaining 32 squares

are green (See Figure 2).

Proceeding inductively, for each Q
(n−1)
j ∈ Gn−1, he chooses 32 squares of Gn which

are contained in Q
(n−1)
j , in such a way that 28 of them intersect the boundary bdyQ

(n−1)
j

and, as before, he chooses the remaining 4 squares arbitrarily in the interior of Q
(n−1)
j .

These 32 squares he colours red, and all the remaining squares he colours green. He

labels the red squares R
(n)
j and the green squares G

(n)
j .

He defines a sequence {φn} of Rachemacher functions:

(1) φn(z) =

 1 if z ∈ interior G
(n)
j for some j

−1 if z ∈ interior Rn
j for some j

0 otherwise (on grid lines) .

Inductively he defines a sequence of functions {fn} by setting

2(a) f1(z) =
{

1 + φ1(z) , if z ∈ Q
0 , otherwise
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and

2(b) fn+1 =
{

fn(z) + φn+1(z) , if fn(z) > 0
0 , otherwise

From this construction it is clear that fn assumes only non-negative integral values,

fn ≤ n + 1, and fn is constant on the interior of any octadic square of size 8−n.

Obviously ∫
Q

(n)
j

φn+1dm = 0

(because the integral of φn+1 over the previous generation is the sum of positive and

negative terms which cancel).

Using this we obtain

(3)
∫

fn(z)dm = 1 +
∫

φn(z)dm = 1, n = 1, 2, 3, · · ·

and

(4)
∫

Q
(n)
j

fn+kdm =
∫

Q
(n)
j

fndm

for all k = 1, 2, 3, · · ·.

Therefore, the sequence {fnm} converges to a unique probability Borel measure

in the weak star topology. This limit is the desired measure ν, and its support is the

compact set N .

The same random walk argument (see below) proves that m(N) = 0 also. Nguyen

showed that the Cauchy transform ν̂ belongs to the Zygmund class. His argument

involves a rather technical and nontrivial elaboration of Kahane’s idea. See [6] for

details.
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3. Proof of results

PROOF OF THEOREM 1. Suppose K is ∂̄–ZC–null, and f ∈ A(C ∼ K). Then f is

an entire function of Zygmund class, and hence for each fixed a ∈ C, as is easily seen,

z 7→ f(a + z)− f(a)

is an entire function that is O(|z| log |z|) for large |z|. Thus it is an affine function, by

Liouville’s Theorem, and hence so is f . This proves the “only if” part of the statement.

To prove the other direction, the key idea is to use the Vitushkin localisation

operator Tφ. For a test function φ : C → C we define

Tφf = C(φ∂̄f)

whenever f is a distribution, where C denotes the Cauchy transform, the convolution

operator

C =
(
−1
πz

)
∗

which inverts ∂̄ on the compactly–supported distributions. It is not too hard to see that

Tφ maps ZC into itself, and it is clear that

∂̄ (Tφf) = φ∂̄f,

so that Tφf is analytic wherever f is and off the support of φ. Also, f −Tφf is analytic

on the interior of the set φ−1(1).

Now suppose that A(C ∼ K) consists only of affine functions, and let f ∈ ZC be

analytic in U ∼ K for some open set U . To see that f is actually analytic on U , it is

enough to show that it is analytic on each open disc D such that closD ⊂ U . Given

such a D, we may choose a test function φ such that sptφ ⊂ U and φ = 1 on a full

neighbourhood of closD. Then, writing

f = Tφf + g,
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we see that g is analytic on D and Tφf belongs to A(C ∼ K), and hence by hypothesis

Tφf is entire, hence f is analytic on D, as required.

We need a couple of preliminaries before we can prove Theorems 2 and 3.

Consider the following symmetric random walk. The walk starts from the initial

position 1 and at each stage steps one unit in the positive or negative direction with

probability 1
2 each. There is an absorbing barrier at zero.

Lemma 1 [3, chap. 14, section 5]. The probability of extinction at the nth step is zero

if n is even, and is

1
n

(
n

n+1
2

)
1
2n

if n is odd.

Lemma 2. The probability that the process has not been absorbed before or at the

n-th step is asymptotic to √
2

nπ
.

PROOF. For n odd, the probability of extinction at the n–th step is, by Lemma 1,

1
n

n!(
n+1

2

)
!
(

n−1
2

)
!2n

and, using Stirlings formula and the approximation (1 + 1/n)n ' e, this is asymptotic

to
1
n

√
2πe−nnn+ 1

2

√
2πe−( n+1

2 )(n+1
2 )

n+2
2
√

2πe−( n−1
2 )(n−1

2 )
n
2

2n

'
√

2
π

1
n

3
2
.

Therefore the probability of surviving past the nk step is asymptotic to√
2
π

∑
m>n

modd

1
m

3
2
' 1

2
√

π

∞∑
r= n

2

1
r3/2

' 1
2
√

π

∫ ∞

n
2

dr

r3/2
=

√
2

nπ
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Both Kahane’s construction and Nguyen’s construction provide models of this same

random walk. Interpreting the constructions in this way proves Theorems 2 and 3. We

start with the second.

PROOF OF THEOREM 3. Consider the ε(xj) as independent random independent

variables on the probability space ([0, 1],B, dx), where B denotes the family of Borel

subsets of [0, 1]. The xj model the steps of the random walk, so Kahane’s set K is

(apart from a countable subset) the set of walks which survive forever. The set of walks

that survive beyond the n–th step is a union of tetradic intervals of length 4−n, and by

Lemma 2 it has length that is O(1/
√

n). Thus, there are O(1/
√

n)4n intervals involved.

Thus, if h(r) = o
(
r
√

log 1
r

)
, we see that

Mh(K) ≤ O(1/
√

n)4nh(4−n) = o(1),

and hence Mh(K) = 0, as required.

PROOF OF THEOREM 2. In the same way, we consider the Rademacher functions of

Nguyen’s construction as modelling the steps of the random walk, where this time the

probability space is Lebesgue measure on the Borel subsets of the unit square. Nguyen’s

set N is (apart from a sigma–rectifiable set) the set of walks that never terminate, and

so an argument just like the last shows that for each n it may be covered by

O(1/
√

(n))64n

squares of side 8−n. Thus, if h(r) = o(r2
√

log 1
r ), we see that

Mh(N) ≤ O(1/
√

n)64nh(8−n) = o(1),

and hence Mh(N) = 0.

PROOF OF THEOREM 4. It is possible to subsume Theorem 4 and Dolzhenko’s

theorem into a common generalisation with a real–variable proof ( Dolzhenko’s proof
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used the Cauchy integral formula ), but there is a simple direct proof of Theorem 4, so

we just give it.

Suppose f : R → C is locally–constant off a compact set K ⊂ R having Mh(K) = 0

for the measure function h(r) = ωf (r). We must show that f is constant on R.

Fix any two points a, b ∈ R ∼ K. It suffices to show that f(a) = f(b). Fix ε > 0.

We may cover the compact set K ∩ (a, b) by a finite union of open intervals Ij = (aj , bj)

(j = 1, 2, 3, . . . , N) such that ∑
j

h(bj − aj) < ε.

We may also arrange that

a < a1 < b1 < a2 < b2 < · · · < an < bn < b.

Then since
f(a) = f(a1),

f(bj) = f(aj+1), (1 ≤ j ≤ n− 1)

f(bn) = f(b),

we obtain

|f(b)− f(a)| =

∣∣∣∣∣∣
∑

j

(f(bj)− f(aj))

∣∣∣∣∣∣
≤
∑

j

ωf (bj − aj) < ε.

Thus f(a) = f(b), as required.
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[1] DOLŽENKO E.P. 1970 On the removal of singularities of analytic functions. Amer.

Math. Soc. Transl. (2) 97, 33–41.

[2] DUREN P.L. SHAPIRO H.S. and SHIELDS A.L. 1966 Singular measures and do-

mains not of Smirnov type. Duke Math. J. 33, 247–54.

[3] FELLER W. 1968 An Introduction to probability theory and its applications. Vol

1, 3rd edition. New York. J. Wiley and Sons.

[4] KAHANE J-P. 1969 Trois notes sur les ensembles parfaits linéaires. Enseignement
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