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1 Introduction

Let (X, ρ) and (Y, σ) be metric spaces. A function f : X → Y is (by
definition) bounded if the image of f has finite σ-diameter. It is well-known
that if X is compact then each continuous f : X → Y is bounded. Special
circumstances may conspire to force all continuous f : X → Y to be bounded,
without Y being compact. For instance, if Y is bounded, then that is enough.
It is also enough that X be connected and that each connected component
of Y be bounded. But if we ask that all continuous functions f : X → Y ,
for arbitrary Y , be bounded, then this requires that X be compact.

What about uniformly-continuous maps? Which X have the property
that each uniformly-continuous map from X into any other metric space
must be bounded?

We begin with an observation.

Lemma 1.1 Let (X, ρ) be a metric space. Then the following are equivalent:
(1) Each uniformly-continuous map from X into another metric space is
bounded.
(2) Each uniformly-continuous map from X into R (with the usual metric)
is bounded.
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Proof. Obviously (1) implies (2). The other direction follows from the facts
that: (a) f : X → Y is bounded if and only if each (or any one) of the
compositions

σ(b, •) ◦ f : x 7→ σ(b, f(x)) (b ∈ Y )

is bounded, and (b) the composition σ(b, •) is uniformly-continuous if f is
uniformly-continuous.

This allows us to concentrate on the case Y = R, with the usual metric.

1.1 Example

Each uniformly-continuous function f : (a, b) → R, mapping a bounded open
interval to R, is bounded. Indeed, given such an f , choose δ > 0 such that
the modulus of continuity ωf (δ) < 1, i.e.

|x− y| < δ ⇒ |f(x)− f(y)| < 1.

Take n ∈ N greater than (b−a)/δ, h = (b−a)/n, and ai = a+ih (0 ≤ i ≤ n).
Then

|f(x)| ≤ 1 + max{|f(ai)| : 1 ≤ i ≤ n− 1}.
A very similar argument shows that if X is totally-bounded, then each

uniformly-continuous function from X is bounded. However, this is not the
whole story.

1.2 Example

Let X be the unit ball of `∞, i.e. the space of all bounded sequences {an} of
complex numbers., with the metric induced by the supremum norm:

ρ({an}, {bn}) = sup
n
|an − bn|.

Suppose f : X → R is uniformly-continuous, and choose δ > 0 such that
ωf (δ) < 1. Let m ∈ N be the ceiling of 1/δ. Then for each a = {an} ∈ X,
taking h = supn |an|/m and bi = iha, we have

|f(a)| ≤ |f(0)|+
m∑

i=1

|f(bi)− f(bi−1| ≤ |f(0)|+ m.

Thus f is bounded. However, X is not totally-bounded.
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2 Epsilon-step Territories

For ε > 0 and a, b ∈ X, we say that a is ε-step-equivalent to b if there exist
points a0 = a, a1, . . ., an = b, belonging to X, with ρ(ai−1, ai) ≤ ε for each
i. This defines an equivalence relation on X (for each fixed ε > 0). We call
the equivalence classes ε-step territories, and denote the territory of a point
a by Tε(a), or just T (a), if the value of ε is clear from the context.

For ε > 0 and a, b ∈ X, we denote by sε(a, b) (or just s(a, b)) the infimum
of those n ∈ N (if any) for which there exist a0 = a, a1, . . ., an = b belonging
to X, with ρ(ai−1, ai) ≤ ε. Obviously, s(a, b) < +∞ if and only if T (a) =
T (b).

We say that a territory T (a) is ε-step-bounded if

sup
x∈T (a)

s(a, x) < +∞,

and we call this supremum the ε-step extent of T (a).
We define a new ‘distance’ function on X × X, the ε-step distance, by

setting dε(a, b) equal to

inf

{
n∑

i=1

ρ(ai−1, ai) : a0, a1, . . . , an ∈ X, a0 = a, an = b, and ρ(ai−1, ai) ≤ ε

}
,

whenever a, b ∈ X. This has all the properties of a metric, except that its
value may be +∞. (One may obtain a proper metric by forming arctan ◦dε.)
The distance dε is a proper metric when restricted to any particular ε-step
territory T (a). In general, dε(a, b) is at least as large as the original ρ(a, b),
but dε(a, b) coincides with ρ(a, b) whenever ρ(a, b) ≤ ε, and hence dε induces
the same topology as ρ on T , and moreover a function f : X → R is ρ-
uniformly-continuous if and only if it is dε-uniformly-continuous. Indeed its
ρ-modulus of continuity coincides with its dε-modulus of continuity when the
argument is less than or equal to ε.

One readily checks that a territory T is ε-step-bounded if and only if its
dε-diameter is finite. Moreover, its ε-step extent lies between

dε − diam(T )

ε
and 2 +

2dε − diam(T )

ε
.

We now state the main result.
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Theorem 2.1 Let (X, ρ) be a metric space. Then the following are equiva-
lent:
(1) Each uniformly-continuous function f : X → R is bounded.
(2) For each ε > 0, X has only a finite number of ε-step territories, and each
territory is ε-step-bounded.

Proof. (1) ⇒ (2): Suppose (1). Fix ε > 0.
Suppose that X has infinitely-many ε-step-territories. Let Tn (for n =

1,2,3,. . . ) be distinct territories. Then the function f , defined by

f(x) =

{
n , x ∈ Tn,
0 , x ∈ X ∼

⋃∞
n=1 Tn,

is uniformly-continuous and unbounded, which is impossible. Thus X has
only a finite number of ε-step territories.

Now suppose that one of the ε-step territories, say T (a), is not ε-step-
bounded. Define

g(x) =

{
dε(a, x) , x ∈ T (a),

0 , x ∈ X ∼ T (a).

Then g is uniformly-continuous on X, and unbounded, contradicting the
assumption. Thus each ε-step territory is ε-step-bounded, and (2) holds.

(2) ⇒ (1): Suppose (2), and fix f : X → R, uniformly-continuous.
Pick δ > 0 such that ωf (δ) < 1. With ε = δ, choose a1,. . .,an ∈ X such

that X =
⋃n

j=1 T (aj). Then take N to be the maximum of the ε-step extents
of the T (aj), for 1 ≤ j ≤ n. Let M = maxj |f(aj)|.

For each x ∈ X, there exists j with x ∈ T (aj), and then there are x0 = aj,
x1,. . .,xm = x belonging to X, with m ≤ N and ρ(xi−1, xi) ≤ ε. Thus

|f(x)| ≤ m + |f(aj)| ≤ N + M.

Thus f is bounded. This proves (1).
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