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Abstract
Analytic capacities are set functions defined on the family of compact subsets of the

plane which may be used in the study of removable singularities, boundary smoothness,
and approximation of analytic functions. The purpose of the present paper is to inves-
tigate the analytic capacities associated to Sobolev spaces. For technical reasons, we do
not work with the usual Sobolev spaces W k,p. Instead, we work with locally–equivalent
spaces, denoted W k,p

∞ .
We denote the ∂̄–W k,p

∞ –cap by γk,p, and we abbreviate γ1,p to γp. We denote the
area of the set E by |E|.

For each p ∈ [1,∞], the null-sets of γp are precisely the sets of zero area. For
1 < p ≤ +∞, there exists κ(p) > 1 such that

κ−1 · |E|1/q ≤ γ(E) ≤ κ · |E|1/q,

for each compact E ⊂ C of diameter at most 1. Here q is the conjugate index: q =
p/(p− 1), and |E| denotes the area of E. The particular case p = +∞ was already
known, and is due to Nguyen.

The capacity γ1 remains obscure. We investigate the relationship between γ1 and
the function `(E) = 1/ log(1/|E|). We show that `(E) = O (γ1(E)) whenever the
compact set E ⊂ C has diameter at most 1. But we also show that γ1(E) 6= O(`(E)).

For k ≥ 3, or k = 2 and p > 2, we have γk,p(E) = 0 if and only if the interior of
E is empty. In this case, we present some estimates for γk,p in terms of the function
dist(z,C ∼ E).

For k = 2 and 1 < p ≤ 2, γk,p(E) = 0 if and only if E has empty interior with
respect to an appropriate fine topology, which we call the p–topology. The problem of
giving a real–variable description of the null–sets of γ2,1 is open.
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1. Notation and Preliminaries.

(1.1) Throughout the paper, A stands for a positive absolute constant, which may be
different at each occurrence.

By Lp we mean the usual space Lp(C, dxdy), of complex-valued measurable p–th
power integrable functions on the plane (or, when p = ∞, essentially–bounded func-
tions). The Sobolev space W k,p consists of those distributions f such that f and all
its distributional partial derivatives up to and including order k are (representable by
integration against) Lp functions. These are all Banach spaces, with standard norms
[1, 5].

We denote the area of a set E ⊂ C by |E|.

We are interested in local questions about functions belonging to these Sobolev
spaces, and in particular functions that are analytic on some open set U ⊂ C. The
kind of questions of interest relate to boundary smoothness properties, removable sin-
gularities, and approximation. For such questions, analytic capacities (defined below)
are useful. These capacities are non–negative set functions, associated to the function
spaces. However, it happens that some Sobolev spaces have identically–zero analytic
capacity. This comes about for non–local reasons, having to do with the behaviour
of the spaces near infinity. For this reason, we replace the Sobolev spaces by spaces
W k,p
∞ that are, in a precise sense, locally–equivalent to the originals. These spaces are

constructed by an application of a standard method called the F∞–construction [9, p.
193, or 8, p.98]. Adapted to the present case, it goes as follows:

(1.2) We use C∞ to denote the space of infinitely–differentiable complex–valued func-
tions on the plane, C∞cs for the space of test functions, C∞′cs for the space of distributions,
and C∞′ for the space of distributions with compact support. We use 〈φ, f〉 to denote
the action of the distribution f on the smooth function φ. In the case where f is
(representable by) an integrable function, this means that

〈φ, f〉 =
∫
φf dxdy.

We define

Lp
loc = C∞ · Lp = {f ∈ C∞′cs : φf ∈ Lp, ∀φ ∈ C∞cs } .

Lp
loc is a Frechet space, with topology defined by the seminorms

f 7→ ‖f‖Lp(X), X compact.

Lp
∞ is the space of those f ∈ Lp

loc such that

‖f‖Lp(B(a,1)) → 0 as a→∞,

and it is normed by
‖f‖Lp

∞
= sup

a∈C
‖f‖Lp(B(a,1)).
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Next, we define W k,p
loc to be the set of all f in Lp

loc with the property that each
distributional derivative, ∂αf , of f is also in Lp

loc for every multi-index α such that
|α| ≤ k.

We define

‖f‖W k,p
∞

= sup
a∈C

 ∑
1≤|i|≤k

‖∂if‖Lp(B(a,1))

 ,

and we set
W k,p
∞ =

{
f ∈W k,p

loc : ‖f ||W k,p
∞

<∞
}
.

(1.3) It is worth noting that ‖f‖W 1,p
∞

is equivalent (up to universally–constant multi-
plicative bounds) to

‖∂f‖Lp
∞

+ ‖∂f‖Lp
∞
,

where ∂ and ∂̄ denote the differential operators

∂ =
1
2

(
∂

∂x
− i

∂

∂y

)
,

∂̄ =
1
2

(
∂

∂x
+ i

∂

∂y

)
.

We shall normally work with this form of the norm. We recall Weyl’s Lemma, which
states that a distribution f is representable by an analytic function when restricted to
some given open set U if and only if ∂̄f = 0 (in the sense of distributions) on U .

(1.4) When a function f is analytic near infinity and zero at ∞, with Laurent expansion

f(z) =
a1

z
+
a2

z2
+ · · · ,

then we denote a1 by f ′(∞). If f ∈ W k,p
∞ and ∂f = 0 off a compact set E, then one

finds that
f ′(∞) =

1
π

∫
E

∂f dxdy.

In fact, if φ ∈ C∞cs has φ = 1 near E, then an application of Pompeiu’s formula shows
that

f ′(∞) =
−1
π
〈∂̄φ, f〉 =

1
π
〈φ, ∂̄f〉,

which immediately yields the stated result.

(1.5) We say that a distribution f is ∂ −W k,p
∞ −admissible for the compact set E ∈ C

if f ∈W k,p
∞ , f is analytic on C ∼ E, f(∞) = 0 and ‖f‖W k,p

∞
≤ 1.

We then define the ∂̄–W k,p
∞ capacity (or analytic W k,p

∞ capacity) of a compact set
E to be

∂ −W k,p
∞ − cap(E) = sup

{
|f ′(∞)| : f is ∂ −W k,p

∞ − admissible for E
}
.
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For the purposes of this paper, we denote the ∂̄–W k,p
∞ –cap by γk,p, and we abbre-

viate γ1,p to γp.
The γ0,p capacities (associated to Lp) have been extensively studied, and we have

nothing to say about them in this paper, nor shall we use any results about them. We
study only the cases k ≥ 1.

By the way, the reason we use W k,p
∞ rather than W k,p is that if W k,p analytic

capacities are defined in the same way as above, then they are sometimes identically
zero. The W k,p

∞ analytic capacities are always nontrivial set functions, and they serve
for the analysis of local questions about W k,p functions, as well as W k,p

∞ functions. (cf.
[8]).

(1.6) The Cauchy transform, C, is defined for test functions by

(Cφ)(ω) =
1
π

∫
C

φ(z)
z − ω

dxdy.

It is extended to more general distributions f by

〈φ, Cf〉 = −〈Cφ, f〉,

whenever φ ∈ C∞cs . For instance, this defines Cf whenever f has compact support, or
f ∈ Lp for some p > 2.

The Cauchy transform inverts the ∂ operator, i.e.

∂̄Cf = f,

whenever f is a distribution having compact support or belongs to some Lp.
The Beurling transform, B, is defined for test functions by

(Bφ)(ω) =
−PV
π

∫
C

φ(z)
(z − ω)2

dxdy.

It is extended to more general distributions f by

〈φ,Bf〉 = 〈Bφ, f〉,

We have
Bf = ∂Cf,

for each distribution f for which the right–hand–side is defined.
The Beurling transform is an example of a Calderon–Zygmund singular integral

operator, so [10, Chapter 1] there exists a universal constant A > 0 such that if f ∈ Lp,
then

‖Bf‖p ≤


A

p− 1
‖f‖p, 1 < p < 2,

Ap‖f‖p, 2 ≤ p < +∞.
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Each extended–real–valued Lebesgue–measurable function f : C → [−∞,+∞] has an
approximate limit, ap–limz→a f(z), at area–almost every point a ∈ C[F]. We say that
an extended real-valued function f : C → [−∞,+∞] is a precise function if f(a) = ap–
lim infz→a f(z) for each a ∈ C (— recall that the ap–lim–infz→a f(z) is the supremum
of the set of all those real numbers t such that

|{z ∈ B(a, r) : f(z) < t}|
πr2

→ 0, as r ↓ 0.)

We say that a complex–valued function is precise if its real and imaginary parts are
precise. Thus the equivalence class of each extended real-valued measurable function,
with respect to the relation of a.e. equality, has a unique precise element. Also, the
equivalence class of every locally–bounded complex–valued measurable function has a
unique precise element.

We will have occasion to use a topology which we call the p–fine topology associated
to a number p ∈ [1, 2]. For our present purposes, we may conveniently describe this
topology as the least topology T such that each precise locally–bounded real-valued
W 1,p

loc function is continuous, as a map of C with the topology T into R, with the
usual topology (induced by the Euclidean metric). Terms such as p–fine–int(erior),
p–fine neighbourhood, and so on, should be understood in terms of the p–fine topology.
Unqualified topological terms should be understood in terms of the usual topology.

2. Statement of Results.
The analytic capacity ∂̄–F∞–cap associated to an F∞ space characterises the removable
singularities for analytic functions of that space (cf. [9]). In the present situation, this
means that a compact set E ⊂ C is removable for all analytic functions belonging to
W k,p
∞ (or W k,p) if and only if γk,p(E) = 0.

The space W 1,∞ evidently coincides with W 1,∞
∞ . As is well–known, it also coincides

with Lip1 (Rademacher’s Theorem, cf. [2]). Nguyen [7] showed that the compact
sets of removable singularities for Lip1 analytic functions are precisely the sets of area
zero, and Hruschev (cf. [4]) later gave quite a simple duality argument to show that
the corresponding analytic capacity is actually comparable to (i.e. within constant
multiplicative bounds of) area. Thus there exists a constant κ > 0 such that

γ∞(E) ≤ |E| ≤ κγ∞(E),

whenever E ⊂ C is compact.
We will not re–prove these results, but we include them where appropriate in the

statements below about general W k,p
∞ .

Our first result identifies the null–sets of all but one γk,p, in real–variable terms.

Theorem 1. (i) For 1 ≤ p ≤ ∞,

γ1,p(E) = 0 ⇐⇒ |E| = 0.

(ii) For (a) k = 2 and 2 < p ≤ +∞, or (b) k > 2 and 1 ≤ p ≤ +∞,

γk,p(E) = 0 ⇐⇒ int (E) = ∅.
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(iii) For 1 < p ≤ 2,
γ2,p(E) = 0 ⇐⇒ p− fine–int (E) = ∅.

We offer no real–variable classification of the null–sets of γ2,1. This problem remains
open. One direction of (iii) works: If 1–fine–int(E) is empty, then γ2,1(E) = 0.

Next, we consider quantitative estimation of γp = γ1,p, beginning with the Beurl-
ing–invariant cases (1 < p <∞).

Theorem 2. There exists A > 0 such that for all E compact in C, with diamE ≤ d,
we have
(i) for 1 < p < 2,

p− 1
A

|E|
1
q ≤ γp(E) ≤ A(1 + d2)|E|

1
q .

and
(ii) for 2 ≤ p <∞,

1
Ap

|E|
1
q ≤ γp(E) ≤ A(1 + d2)|E|

1
q .

The Nguyen–Hruschev result covers the case p = ∞, so that leaves p = 1. The fact
that the null-sets of γ1 are the exactly the sets of area zero might suggest that perhaps
the capacity is simply a function of area, at least in the small. We will see that the γ1

capacity of a ball B(0, r)) is comparable to 1/(log 1/r) as r ↓ 0, so the only possible
function of area (up to bounded equivalence) is the function `(E) = 1/ log(1/|E|).

We obtain a ‘local’ lower bound of this form for the capacity:

Theorem 3. Given d > 0, there exists A > 0 such that

`(E) ≤ A · γ1(E),

whenever diam(E) ≤ d.

However, we show by example that there is no corresponding local upper bound:
for each d > 0 and A > 0, there is a set E of diameter less than d whose γ1 capacity is
greater than A · `(E).

Thus ` is not even locally equivalent to γ1. It follows that γ1 is not locally–
equivalent to a function of area. So the problem of giving a satisfactory local real–
variable description of this analytic capacity remains open.

We prove Theorem 1 in section 3, and Theorem 2 in section 4. In section 5, we
estimate the γ1,1 capacity of balls. In section 6, we prove Theorem 3, and in section 7
we give an example to show that the corresponding upper bound is false in general.

In the final section, we provide some rough bounds for γk,p, in case k > 1 + 2/p,
i.e. in case W k,p consists of C1 functions.

Theorem 4. Let 1 ≤ p ≤ +∞. Suppose k > 1 + 2/p. Let q be the conjugate index to
p. Let E ∈ C be compact, and d(z) = dist(z,C ∼ E). Then

κ‖dk−1‖Lq ≤ γk,p(E) ≤ λk,p‖dk−1−2/p‖L1 ,

where the constant κ depends on p, but not on E.
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3. Proof of Theorem 1.
Proof of (i): Let E ⊂ C be a compact set, |E| = 0, and let f be admissable for E.
We have to show that f ′(∞) = 0. But this is immediate from the formula

f ′(∞) =
1
π

∫
E

∂fdxdy. (1)

For the converse, suppose that E has positive area. Then by Nguyen’s Theorem, there
exists f ∈ W 1,∞ such that f is holomorphic off E and f ′(∞) 6= 0. Then, by Hölder’s
inequality, f belongs to each W 1,p

∞ , for p ∈ [1,+∞]. So γp(E) > 0, as required. QED

Proof of (ii): Let k > 2 or k = 2, p > 2. Then each of the spaces W k,p
∞ is a subset of

C1, the space of continuously–differentiable functions. Thus it is evident that compact
sets with empty interior are removable singularities for W k,p

∞ analytic functions. Con-
versely, if a compact set E has nonempty interior, then its interior supports a nonzero
nonnegative test function, say φ. Then Cφ is a C∞ function, analytic off E, has nonzero
derivative at ∞, and belongs to each W k,p

∞ . Thus γk,p(E) > 0. QED

Proof of (iii): In proving this part, we shall use Adam’s result that max{f, g} and
min{f, g} belong to W 1,p whenever f and g do [3, Chapter 1].

Fix p, with 1 < p ≤ 2.
Suppose that the p–fine–interior of E is empty. Let f be ∂̄–W 2,p

∞ –admissible for E.
Then the function ∂̄f belongs to W 1,p

∞ , and is supported on E. Let g be the real part
of ∂̄f . Fix n ∈ N. Let gn be the precise representative of max{−n,min{n, g}}. Then
gn is real–valued and belongs to W 1,p, gn = 0 off E, so gn = 0 on E as well. Thus g
takes only the values 0, +∞, and −∞ area–almost–everywhere. Since g is integrable,
g = 0 a.e.. Similarly, the imaginary part of ∂̄f vanishes a.e.. Hence ∂̄f = 0 area–
almost–everywhere. By Weyl’s Lemma, this means that f is entire. Applying formula
(1) again, we have f ′(∞) = 0. Thus γ2,p(E) = 0.

For the converse, suppose that p–fine–int(E) is nonempty. Then (using truncation)
we may choose a single precise bounded real–valued function h ∈W 1,p such that h > 1
at some point of p-fine-int(E) (and hence h > 1 on some subset of p-fine-int(E) having
positive area), and h = 0 off E.

Let g = max{h, 0}. Then g ∈ W 1,p, g ≥ 0, g = 0 off E, and g > 0 on a set of
positive area.

Let f = Cg. Then f ∈ W 2,p
∞ (by the Calderon–Zygmund theory), f is analytic off

E, and

f ′(∞) =
∫
C
gdxdy > 0.

Thus γ2,p(E) > 0.
This concludes the proof. QED

We remark that the first part of the proof of part (iii) works also for p = 1, so the
compact sets with empty 1–fine–interior are γ2,1–null. The converse is probably false.
A real–variable characterisation of the null sets of this capacity is lacking.
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4. Proof of Theorem 2.
Fix E compact in C. Let f = C(χE), where χE is the characteristic function of E.

From the definition it is easily seen that f ′(∞) = |E|/π.
To get the lower bound for γp, we proceed to obtain an upper estimate for the W 1,p

∞
norm of f , by estimating

‖∂f‖Lp
∞

+ ‖∂f‖Lp
∞
.

First,
‖∂f‖Lp

∞
= ‖χE‖Lp

∞
= |E|

1
p .

Next,

‖∂f‖Lp
∞

= ‖B(χE)‖Lp
∞
≤


A

p− 1
‖χE‖Lp

∞
, 1 < p < 2;

Ap‖χE‖Lp
∞
, 2 ≤ p < +∞,

≤


A

p− 1
|E|

1
p , 1 < p < 2;

Ap|E|
1
p , 2 ≤ p < +∞.

Thus

‖f‖W 1,p
∞

≤


A

p− 1
|E|

1
p , if 1 < p < 2;

Ap|E|
1
p , otherwise.

Let g = f/‖f‖W 1,p
∞

. Then ‖g‖W 1,p
∞

= 1, and thus

γp(E) ≥ g′(∞) ≥


p− 1
Aπ

|E|
1
q , if 1 < p < 2;

1
Apπ

|E|
1
q , otherwise.

Next, we prove the upper bound.

Let f be ∂ −W 1,p
∞ −admissable for E. Let g = ∂f . Then g belongs to the unit ball

of Lp
∞ and g = 0 off E.
We may cover E using N = 100(1+d2) balls B1,. . .,BN , of diameter 1. Then, using

formula (1) of section 3 and Hölder’s inequality, we get

|f ′(∞)| ≤ 1
π

∫
E

|g|dxdy

≤ 1
π

N∑
j=1

∫
E∩Bj

|g|dxdy

≤ A(1 + d2)|E|1/q,

Therefore, γp(E) ≤ A(1 + d2)|E|1/q. This concludes the proof of Theorem 2. QED
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5. The W 1,1
∞ Capacity of Balls.

We consider the γ1 capacity of the ball B = B(0, R). We assume that R is small, say
R < 1/2.

Let f be admissable for B. Define g to be the circular symmetrisation of f :

g(z) =
1
2π

2π∫
0

eiθf(eiθz)dθ.

Then one readily checks that

g(z) =
f ′(∞)
z

off E, ‖g‖W 1,1
∞

≤ ‖f‖W 1,1
∞

≤ 1, and |g′(∞)| = |f ′(∞)|.

Thus g is also admissible, has the same derivative at ∞, and has the special form
const/z, off E. We deduce that the capacity is the same as

sup
{
|a| : a > 0, a/z has an extension across E that lies in the unit ball of W 1,1

∞
}
.

Thus γ1(B) is exactly the reciprocal of

inf
{
‖f‖W 1,1

∞
: f =

1
z

off E

}
.

Consider, in particular, the function

h(z) =


z

R2
, if |z| < R;

1
z
, otherwise.

We have

∂h =

{
0, |z| < R,

−1/z2, |z| > R,

∂̄h =

{
1/R2, |z| < R,

0, |z| > R,

Let D be any disk of radius 1. Then a routine estimate gives∫
D

|∂h|dxdy ≤ A log
1
R
.∫

D

|∂̄h|dxdy ≤ A.

Thus
‖h‖W 1,1

∞
≤ A log(1/R).
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On the other hand, if f is any element of W 1,1
∞ having f(z) = 1/z off B, then

‖f‖W 1,1
∞

≥
∫
B(0,1)∼B

rdrdθ

r2
≥ A−1 log(1/R).

Combining these facts, we see that

A−1

log(1/R)
≤ γ1(B(0, R)) ≤ A

log(1/R)

for 0 < R < 1/2.

6. Proof of Theorem3: a lower bound for γ1(E).
It suffices to prove the case d = 1.

Consider a set E contained in B(0, 1).
Fix p, with 1 < p < 2.
By Theorem 2, we may choose a function f ∈ W 1,p

∞ ( — in fact we could use a
multiple of the function CχE — ) such that f is ∂̄–W 1,p

∞ –admissible for E, and

f ′(∞) ≥ A(p− 1)|E|1/q,

where q is the conjugate index to p.
But Hölder’s inequality shows that, for any g ∈ Lp

loc and any ball B of radius 1, we
have ∫

B

|g|dxdy ≤
(∫

B

|g|pdxdy
)1/p

· π1/q.

This implies that
‖g‖L1

∞
≤ ‖g‖Lp

∞
· π1/q.

Applying this to g = |∇f |, we see that π−1/qf is ∂̄–W 1,1–admissible. Therefore,

γ1(E) ≥ A(p− 1)(|E|/π)1/q.

For each α > 0, we have (by calculus)

sup
1<p<2

(p− 1)α1/q ≤ 2 · sup
0<x<1/2

xαx

= 2 ·max
{

1
e log 1/α

, α1/2

}
.

Applying this with α = |E|/π, and bearing in mind that E ⊂ B(0, 1), we obtain

γ1(E) ≥ A`(E),

as required. QED
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7. γ1 6= O(`).
Let d > 0 and κ > 0. We now construct a set E, with diameter less than d, such that
γ1(E) ≥ κ · `(E).

The Beurling transform of the characteristic function χr of the ball B(0, r) is given
by

Bχr(z) =


0, if |z| < r;

−r2

z2
, otherwise.

Let 0 < s < r + s < d and let E denote the annulus

E = {z ∈ C : r < |z| < r + s}.

Then χE = χr+s − χr, so we get

BχE(z) =


0, if |z| < r,

r2

z2
, if r < |z| < r + s,

−s(2r + s)
z2

, if |z| > r + s.

If s/r and r are sufficiently small, we conclude that

‖BχE‖L1(B(0,1)) ≤ 4πrs log
1
r
.

Let h = χE/|E|. Then spth ⊂ E,
∫
hdxdy = 1, and

‖h‖L1 = 1 ≤ 1
2πκ

log
1
|E|

,

provided |E| is small enough. Also,

‖Bh‖L1(B(0,1)) ≤ 8 log
1
r
≤ 1

2πκ
log

1
|E|

,

provided s is sufficiently smaller than r. Now let

g =
κπ

log(1/|E|)
Ch.

Then g is ∂ −W 1,1
∞ −admissible for E, and so

γ1(E) ≥ |g′(∞)| =
∣∣∣∣ κπ

π log 1/|E|

∫
hdxdy

∣∣∣∣ > κ`(E),

as required.
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8. The Cases when W k,p ⊂ C1.

For this section, we suppose that we are in the situation of case 2◦ of Theorem 1, i.e.
k ≥ 3 (and p is unrestricted), or else k = 2 and p > 2. In these cases, the elements
of W k,p are C1 functions, and the null–sets of γk,p are precisely the sets with empty
interior.

Suppose that int(E) is nonempty. We wish to give a quantitative estimate for
γk,p(E).

We fix E compact, of diameter less than 1, and abbreviate d(z) =dist(z,C ∼ E).

Lemma 1. Let φ : [0,+∞) → [0,+∞) be any continuous function such that for some
κ > 0, we have

φ(r)
κ

≤ φ(2r) ≤ κφ(r).

Then there exist constants µ > 0 (depending on κ, but independent of E) and ck > 0
(independent of κ and of E), and a C∞ function δ : C → [0,+∞), such that

φ(d(z))
µ

≤ δ(z) ≤ µφ(d(z)),

whenever z ∈ C, and

|∇kδ(z)| ≤ µ · ck ·
φ(d(z))
d(z)k

,

whenever k ∈ N and z ∈ C.

Proof. The familiar Whitney covering construction (cf. [10]) provides a partition
of unity {ψn} on intE such that 0 ≤ ψn ≤ 1, at most 100 of the ψn(z) are nonzero at
any given z, d(z) ≤ 4d(w) whenever ψn(z)ψn(w) 6= 0 for some, n, and d(z)k|∇kψ(z)| is
bounded by some constant ck, for each k ≥ 0.

Choose zn ∈ sptψn, for each n, and let

δ(z) =
∑

n

φ(d(zn))ψn(z), ∀z ∈ C.

Then one readily verifies that δ has the desired properties. QED

Proof of Theorem 4. Let q be the conjugate index to p, as usual. If we apply
the lemma to φ(r) = r(k−1)q, then the resulting function δ has

δ(z) ≥ d(z)(k−1)q

µ
, and

‖∇(k−1)δ‖Lp
∞
≤ A ·

(∫
C
d(z)(k−1)(q−1)pdxdy

) 1
p

= A ·
(∫

C
d(z)(k−1)qdxdy

) 1
p

,
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so the function k(z) = Cδ(z)/(A ·
∫
d(k−1)q)1/p is ∂̄–W k,p

∞ –admissible. Thus

γk,p(E) ≥ 1
π

∫
∂̄kdxdy

≥
κ

∫
d(k−1)q

(
∫
d(k−1)q)1/p

= κ‖dk−1‖Lq .

This establishes the desired lower bound. The upper bound is readily obtained by using
the Sobolev inclusion

W k−1,p ↪→ Lip(k − 1− 2/p)

and the formula (1) of section 3. QED

Problems: We list here the most interesting open problems thrown up by this
investigation.

(1) Find a real–variable description of γ1,1 (if possible).
(2) Identify the null–sets of γ2,1 in real–variable terms (if possible).
(3) Find sharp quantitative estimates for γk,p when k > 2/p.

We would like to acknowledge useful conversations with Stephen Buckley.
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