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Abstract.

The k–th order tangent star, Tank(M,X), of a closed subset X of a Ck manifold M is

defined and studied. The map (M,X) 7→ Tank(M,X) is a covariant functor from the

category of pairs to the category of stars. Given a continuous function f : X → R, and

letting G = graphf , we consider the star–morphism

π∗ : Tank(M ×R, G) → Tank(M,X)

induced by the projection π : M ×R → M .

Theorem : The function f has a Ck extension to M if and only if π∗ is a bijection.

A method for calculating Tank(M,X), and several examples, are presented, and

the relations to other tangent concepts are investigated.
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1. Introduction.

The purpose of this paper is to introduce the k–th order tangent star, denoted TankX,

of an arbitrary closed set X contained in a Ck manifold, M . A star is something like

a vector bundle, but there are two main differences. All the rays S(a) of a star S are

vector spaces, but unlike the fibres of a vector bundle, they share a common origin, and,

more significantly, the dimension of S(a) is nonconstant. The rays Tank(X, a) of TankX

are, in addition, finitely–generated modules over finite–dimensional real algebras. The

formal definitions of star and tangent star are given in section 2. The relation of first–

order tangent stars to the classical tangents of Denjoy, Whitney and Zariski, and the

relation of higher–order tangent stars to the higher–order tangent bundles of Pohl [31]

and to the paratangent spaces of Glaeser [17] are explained in section 6.

The modules Tan1(X, a), . . . ,Tank(X, a) carry a lot of information about the germ

of the set X at the point a, and are invariant under Ck diffeomorphisms. These invari-

ants (including associated integral invariants) have considerable discriminating power,

and may prove useful in connection with singularities and critical points. However,

our immediate motivation for introducing them is the study of smooth extensions. We

wanted to sharpen Whitney’s extension theorem.

Whitney’s theorem is well–known, has been frequently used [1, 3, 4, 8, 11, 12, 14,

15, 17, 20, 21, 23, 24, 26, 34, 36, 37, 38, 41], and has been developed in various directions

[2, 5, 6, 7, 10, 15, 19, 22, 25, 27, 28, 33, 35]. It is usually described as giving conditions

on a function f : X → R (where X ⊂ Rd is an arbitrary closed set), necessary and

sufficient for the existence of a Ck function f̄ : Rd → R, such that f̄ |X = f . This

description is a bit misleading. The theorem actually says [39] that such an f̄ exists if

and only if some other functions fi (corresponding to each d–term multi–index i of order

|i| ≤ k), all mapping X to R continuously, and satisfying a technical condition, exist.

The technical condition says, essentially, that the jet (fi) satisfies Taylor’s theorem on

X, in a locally uniform way. The trouble about the theorem is that the functions fi are
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not, in general, uniquely determined By f . The theorem is more properly described as

an extension theorem for Ck jets, rather than functions. In some potential applications,

f is given, but suitable fi are not to hand. This well–known problem (cf. [10]) has

sometimes been overcome in an ad–hoc fashion [9, 13, 18, 32]. The objective of our

investigation was to find a result which would meet the following criteria:

Given a closed set X ⊂ Rd and a function f : X → R, we should be able to

determine whether or not f has a Ck extension by examining only quantities which

are uniquely and explicitly calculable from the values of f on X. Furthermore, we

should be able to write down a formula or algorithm for an extension, if there is

one.

Granted, there is an element of vagueness about these criteria, but on any inter-

pretation they call for substantial sharpening of Whitney’s result.

In this paper, we present a result which meets the first criterion: it tells us whether

or not there exists a Ck extension, using only explicitly–calculable quantities.

Given X and f , we may insist that f be continuous, and then its graph is a

closed subset of Rd+1. The projection induces a natural map π∗ from Tank(graphf)

onto TankX, in a way described below (cf. Section 3). We prove that f has a Ck

extension to Rd if and only if the map π∗ is bijective. The proof of sufficiency

given in section 7 is nonconstructive, but we show in Section 5 how the stars TankX

may be explicitly computed.

As regards the second criterion, we have worked out constructive proofs of the

extension theorem in a number of cases. See the remarks in section 7.

Whitney himself [40] gave a constructive condition for the existence of a Ck exten-

sion in the one–dimensional case. This was later refined somewhat by Merrien [25]. This

condition involves the uniform continuity of a constructively–defined divided difference

f [x0, . . . , xk] on the (k+1)–st symmetric product X×· · ·×X. This kind of condition is

less straightforward to verify in examples than the condition of the present paper, since

the new condition involves only the examination of a finite–dimensional vector space at

each point.

In more than one dimension, there have been some results for more–or–less “nice”

or “fat” sets (e.g. [4, 5, 6, 7]) and for functions with extra properties (e.g. [10]), and

there is a C1 result for arbitrary dimensions in [28], but as far as we are aware the

present result is the first to deal comprehensively with Ck extensions from arbitrary
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closed sets and for arbitrary k.

2. Notation and definitions.

Throughout the paper, d and k denote non–negative integers.

The open ball with centre a and radius r in Rd is denoted by B(a, r).

For a multi–index i ∈ Zd
+ of order j = |i| =

∑d
m=1 im we denote

∂i =
∂j

∂xi
=

∂j

∂xi1
1 · · · ∂xid

d

.

and xi = (x1, . . . , xd)i = xi1
1 · · ·x

id

d . The factorial i! is i1· · · id.
If V is a real topological vector space, then V † denotes the algebraic dual of V , that

is, the space of linear functionals on V , and V ∗ denotes the topological vector space

dual of V , that is, the space of continuous linear functionals on V .

By a star we mean a triple (X, V, S), where X is a set, V is a real vector space,

and S ⊂ V is a set of the form

S =
⋃

a∈X

S(a)

where each S(a) is a subspace of V and S(a) ∩ S(b) = {0} whenever a 6= b. We also

say that S is a star in V over X. We call the S(a) the rays of the star S. We define

p : S ∼ {0} → X by specifying that p(s) = a whenever s ∈ S(a).

By a morphism of a star (X, V, S) to another star (Y, W, T ), we mean a pair (f, g)

of maps such that f : X → Y and g : S → T such that g|(S(a)) is a linear map of S(a)

into T (f(a)), for each a ∈ X.

Observe that this implies that the star (X, V, S) will be isomorphic to the star

(X, W,S) whenever V is a subspace of W . We are not very interested in V , which

is simply there in order to provide a place in which elements of different rays may be

added together.

By the span of a star S, we mean its linear span in the ambient vector space V .

A topological star is a star (X, V, S) such that X is a topological space, V is a

topological vector space, S is a closed subset of V , and the mapping p : S ∼ {0} → X is

continuous. These conditions imply that the rays S(a) are closed. Another consequence

is that

lim sup
x→a

dimS(x) ≤ dimS(a),
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i.e. the dimension of rays is an upper semi–continuous function of the base point. Thus

the sets

{x ∈ X : dimS(x) ≥ j}

are closed in X.

The ring of all real–valued polynomial functions on Rd is denoted by R[x1, . . . , xd]

or just R[x], and the subspace consisting of all polynomials of degree less than or equal

to k is denoted by R[x]k. For each a ∈ Rd, we define the quotient algebra

R[x]k,a = R[x]/〈(x− a)i : |i| = k + 1〉.

The restriction to R[x]k of the quotient map R[x] → R[x]k,a is a linear isomorphism of

R[x]k onto R[x]k,a.

For a Ck–manifold, M , Ck(M) denotes the algebra consisting of all k–times contin-

uously differentiable real–valued functions on M , with pointwise operations. With the

usual topology, Ck(M) is a separable Frechet (i.e. complete, metrizable, locally–convex

topological) algebra. When there is no danger of confusion, we shall abbreviate Ck(M)

to Ck.

Let X be a subset of M . The kernel of X is the ideal

X⊥ = I(X) = Ik(X) = {f ∈ Ck(M) : f |X ≡ 0}.

For any point a ∈ M , we write the kernel Ik({a}) of the singleton {a} as Ik(a) or I(a)

or a⊥.

For any subset S of Ck(M), the annihilator of S is the subspace

S⊥ = {γ ∈ Ck(M)∗ : γ(f) = 0, ∀f ∈ S}.

Let a ∈ M . The space of (at most) k–th order tangents to M at a or continuous

point differential operators on M at a of order at most k, denoted by Tank(M,a), is the

annihilator of I(a)k+1 in Ck(M)∗; that is,

Tank(M,a) = Ck(M)∗ ∩ (I(a)k+1)⊥.

Let X be a subset of M , and a ∈ X. The space of k–th order tangents to (M,X)

at a, is the set

Tank(M,X, a) = Ck(M)∗ ∩ I(X)⊥ ∩ (I(a)k+1)⊥
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of k–th order tangents to M that depend only on the values of functions on X.

Since I(closX) = I(X), we have

Tank(M,X, a) = Tank(M, closX, a).

Thus there is no loss in restricting attention to closed sets X. We do this from now on.

The dual Ck(M)∗ becomes a Ck(M)–module in the usual way: if γ ∈ Ck(M)∗ and

f ∈ Ck(M), then f • γ ∈ Ck(M)∗ is defined on all h ∈ Ck(M) by

(f • γ)(h) = γ(fh).

Since the annihilator of any ideal of Ck(M) is a Ck(M)–submodule of Ck(M)∗,

Tank(M,X, a) is a Ck(M)–submodule of Ck(M)∗.

Lemma 2.1. The set

Tank(M,X) =
⋃

a∈M

Tank(M,X, a)

is a topological star in Ck∗ over M , with respect to the weak–star topology on Ck∗. It

is a closed substar of the star

TankM =
⋃

a∈M

Tank(M,a).

Proof. This is easily verified. QED

We call TankM the k–th order tangent star of M , and we call Tank(M,X) the k–

th order tangent star of (M,X). The reason for this terminology is that we shall have

occasion to consider one and the same X with respect to several containing manifolds

M . As we shall see, the dependence of Tank(M,X) on M is weak.

All the stars of interest to us are substars of TankM ’s.

For a nonzero ∂ ∈ TankM we denote by pt∂ the unique point a ∈ M such that ∂ ∈
Tank(M,a). As a matter of convenience we define pt0 to be some fixed point (it doesn’t

matter which) of M (—this convention enables us to avoid making an exceptional case

of ∂ = 0 all the time).

By a k–jet we mean a function

j : S → R

where S is a substar of a TankM and j|S(a) is linear for each a ∈ M .

In terms of local coordinates, point differential operators are familiar–looking ob-

jects. It is enough to consider M = Rd:
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Lemma 2.2. Let ∂ ∈ Tank(Rd, a). Then there exist unique αi ∈ R such that

∂(f) =
∑
|i|≤k

αi
∂if

∂xi
(a)

whenever f ∈ Ck.

Proof. The ring R[x] = R[x1, . . . , xd] of polynomials in x1, . . . , xd is dense in Ck(Rd).

Thus ∂ is determined by its values on R[x]. Since ∂ annihilates (x−a)i whenever |i| > k,

it is in fact determined by its values on R[x]k,a, and hence by its values on R[x]k, and

∂f equals the value of ∂ on the Taylor polynomial of f at a. The existence follows. The

uniqueness is clear. QED

To illustrate Tank(Rd, a), consider d = 2 and fix a ∈ R2. We denote the evaluation

functional f 7→ f(a) by δa, or just δ, and the functionals

f 7→ ∂f

∂x
(a)

and

f 7→ ∂f

∂y
(a)

by ∂
∂x |a and ∂

∂y |a, or just ∂
∂x and ∂

∂y . Similarly, ∂2

∂x2 denotes f 7→ ∂2f
∂x2 (a), etc. Then

Tan0(R2, a) = Rδ,

Tan1(R2, a) = Rδ + R
∂

∂x
+ R

∂

∂y
,

Tan2(R2, a) = Rδ + R
∂

∂x
+ R

∂

∂y

+ R
∂2

∂x2
+ R

∂2

∂x∂y
+ R

∂2

∂y2
,

etc.

A further consequence of the density of the polynomials in Ck(Rd) is that the

Ck(Rd)–modules Ck(Rd)∗ and Tank(Rd, X, a) can be viewed as R[x]–modules. The

point is that the Ck–action is completely determined by the R[x]–action. Further, since

Tank(Rd, a) annihilates (x− a)i whenever the multi-index i has |i| > k, we may regard

Tank(Rd, a) as a module over the finite–dimensional algebra R[x]k,a.

A subset of Tank(Rd, a) is a Ck–module if and only if it is an R[x]k,a–module.
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To illustrate the module action, consider T = Tan2(Rd, 0). We have

1 • ∂2

∂x∂y
=

∂2

∂x∂y
,

x • ∂2

∂x∂y
=

∂

∂y
,

y • ∂2

∂x∂y
=

∂

∂x
,

x2 • ∂2

∂x∂y
= 0,

xy • ∂2

∂x∂y
= δ,

x exp (x + y) • ∂2

∂x∂y
= (x + x2 + xy) • ∂2

∂x∂y

=
∂

∂y
+ δ.

As a module, T is generated, for instance, by the tangents ∂2

∂x2 , ∂2

∂x∂y , and ∂2

∂y2 .

Lemma 2.2 shows that Tank(Rd, a) is linearly isomorphic to R[x]k. Thus its dimen-

sion is
(

k+d
k

)
. For instance, Tan2(R2, 0) has dimension 6, Tan3(R7, 0) and Tan7(R3, 0)

have dimension 120, Tan8(R8, 0) has dimension 12870, etc.

When M is a Ck manifold, and X ⊂ M , we may consider all the stars T 0 =

Tan0(M,X) ⊂ C0(M)∗, T 1 = Tan1(M,X) ⊂ C1(M)∗, . . . T k = Tank(M,X) ⊂ Ck(M)∗.

Each is a Ck invariant. For a C∞ manifold, we get an infinite sequence of invariants.

The star T 0 = Tan0(M,X) is simple. The ray T 0(a) is {0} if a 6∈ X, and is

one–dimensional if a ⊂ X. In fact,

Tan0(M,X, a) = Rδa

whenever a ∈ X.

Formally, T 0 and T 1 are unrelated, since they lie in distinct vector spaces C0∗ and

C1∗, but there is a natural injection C0∗ → C1∗ (the restriction map, the adjoint to

the inclusion C0 ⊂ C1). If we identify C0∗ with its image in C1∗, then Tan0(M,X)

becomes a substar of Tan1(M,X). Continuing, we may regard Tan1(M,X) as a substar

of Tan2(M,X), and so on.

This allows us to define the order of an element ∂ of Tank(M,X), as the least j

(necessarily ≤ k ) such that ∂ ∈ Tanj(M,X). However, as will appear from examples

in Section 5, this order depends on X, in general; that is, if

∂ ∈ Tank(M,X) ∩ Tank(M,Y ),
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then the order may be different if calculated with respect to X or to Y . Thus we must

call it the X–order, to avoid confusion. In particular, there are two natural orders for

an element ∂ ∈ Tank(M,X), namely its X– order and its M–order. In what follows, we

shall use the unqualified term order exclusively to refer to the M–order. For example,

it might happen that the X–order of ∂
∂y |a is 2, or 3, or more, but its order is always 1.

The order produces a grading of the module TankM (and of its submodules), and

the module action respects this grading, in the sense that multiplication of a tangent

by a function does not increase the order.

The Frechet space Ck(M) is not normable unless M is compact, but there is a

reasonable norm on the dual Ck(M)∗ in case M = Rd. Each µ ∈ Ck(Rd)∗ has compact

support, and we may define

‖µ‖Ck∗ = sup{µ(f) : f ∈ Ck and |∇if | ≤ 1 on Rd, ∀|i| ≤ k}.

In the light of Whitney’s extension theorem we can see that this norm is equivalent to

µ 7→ sup{µ(f) : f ∈ Ck and |∇if | ≤ 1 near sptµ, ∀|i| ≤ k}.

3. Induced maps, and statement of main results.

Let M and N be Ck–manifolds, and let F : M → N be a Ck–map. Then F induces a

continuous algebra homomorphism

F ] :

{
Ck(N) → Ck(M)

g 7→ g ◦ F,

and a continuous R–linear map

F] : Ck(M)∗ → Ck(N)∗

defined by setting
F](γ)(g) = γ(F ](g))

= γ(g ◦ F ),

for all γ ∈ Ck(M)∗ and g ∈ Ck(N).

The algebra homomorphism F ] induces a Ck(N)–action on any Ck(M)–module: in

particular the Ck(N)–action on Ck(M)∗ is defined by setting

g •
F

γ = F ](g) • γ
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for all g ∈ Ck(N) and γ ∈ Ck(M)∗. Then F] is a Ck(N)–module homomorphism, that

is,

F][(F ]g) • γ] = g •
F

F]γ

for all g ∈ Ck(N) and γ ∈ Ck(M)∗.

The associations
M 7→ Ck(M)∗

F 7→ F]

described above define a covariant functor from the category of Ck–manifolds and Ck–

maps to the category of topological vector spaces over R and continuous R–linear maps.

Let the objects of the category of pairs be ordered pairs (M,X), where M is a Ck

manifold and X is a closed subset of M ; the morphisms from (M,X) to (N,Y ) are Ck

maps F : M → N such that F (X) ⊂ Y .

Similarly, let T denote the category of pointed pairs, with the following objects and

morphisms: an object is a triple (M,X, a), where M is a Ck–manifold, X a closed subset

of M and a an element of X; and a morphism from (M,X, a) to (Y, N, b) is a Ck–map

F : M → N such that F (X) ⊆ Y and F (a) = b.

Such a T–morphism F from (M,X, a) to (Y, N, b) induces, as described above, a

continuous R–linear map F] : Ck(M)∗ → Ck(N)∗. Let F∗ denote the restriction of F]

to Tank(M,X, a), so, for any ∂ ∈ Tank(M,X, a), F∗(∂) ∈ Ck(N)∗ is defined by

F∗(∂)(g) = ∂(g ◦ F ),

for g ∈ Ck(N). In fact, F∗(∂) ∈ Tank(Y, N, b), as is readily seen.

Thus a T–morphism F induces a continuous R–linear map

F∗ : Tank(M,X, a) → Tank(N,Y, b)

and there is a functor from the category T to the category of topological real vector

spaces, and continuous R–linear maps, given by

(M,X, a) 7→ Tank(M,X, a)

F 7→ F∗.

Similarly, a morphism F : (M,X) → (N,Y ) induces a morphism

F∗ : Tank(M,X) → Tank(N,Y )
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of topological stars, and the maps{
(M,X) 7→ Tank(M,X),

F 7→ F∗

give a covariant functor from pairs to topological stars.

Recall that Tank(M,X, a) is a Ck(M)–submodule of Ck(M)∗, with action defined

by

[f • ∂](h) = ∂(fh)

for all f, h ∈ Ck(M) and ∂ ∈ Tank(M,X, a). Further, for any T –morphism F from

(M,X, a) to (N,Y, b), the induced map F∗ is a Ck(N)–module homomorphism:

F∗[(F ]g) • ∂] = g •
F

F∗∂

for all g ∈ Ck(N) and ∂ ∈ Tank(M,X, a). Since any Ck(M)–modulebecomes, via F],

a Ck(N)–module, the image under F∗ of any Ck(M)–submodule of Tank(M,X, a) is a

Ck(N)–submodule of Tank(N,Y, b).

To illustrate induced maps F∗, consider the map

F :

{
R2 → R3,

(x, y) 7→ (u, v, w) = (x + y, x2 + y2, xy2),

If ∂ ∈ Tan2(R2, 0) is

∂ =
∂

∂x
+

∂2

∂x∂y
,

then for g = g(u, v, w) ∈ C2 we compute

(F∗∂)g = ∂g(x + y, x2 + y2, xy2)

= gu + 2xgv + y2gw + guu + 2xguv + y2guw + 2xguv + 4x2gvv

+2xy2gvw + 2ygw + y2guw + 2xy2gvw + y4gww

∣∣
0

= gu(0) + guu(0),

so the image of ∂ under F∗ is ∂
∂u |0 + ∂2

∂u2 |0.
In general, the value of F∗∂ will have order less than or equal to the order of ∂, and

depends only on the k–th order Taylor polynomial of F at pt∂. A sharper statement is

true, as is easily seen:
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Lemma 3.1. Let F : M → N be a Ck map, let r be the degree of the lowest noncon-

stant term in the Taylor expansion of F at a point a ∈ M , and let ∂ ∈ Tank(M,a).

Then

orderF∗∂ ≤ order∂ − r + 1.

We are now in a position to give a precise statement of the main result of this

paper.

Theorem 1. Let M be a Ck manifold, X ⊂ M be closed, and f : X → R be continuous.

Let G denote the graph of f . Let

π :

{
M ×R → M

(x, y) 7→ x

be the projection and denote the point (a, f(a)) by ã. Then f has a Ck extension to M

if and only if the map

π∗ : Tank(M ×R, G, ã) → Tank(M,X, a)

is bijective for each a ∈ X.

Throughout the paper, we reserve the notation π for such projection maps.

Remarks. 1. The hypothesis that f be continuous cannot be removed. For instance,

the function f : R → R, given by

f(x) =

{
0, x ≤ 0,

1/x, x > 0,

has closed graph, and π∗ gives a bijection from Tank(graphf) onto TankR for each k

(see below for the calculation of such Tank’s), although f is not continuous at 0.

2. There is a simple criterion for injectivity of π∗, which is given in the following

lemma.

Lemma 3.2. Let x1, . . . , xd be local coordinates for a neighbourhood U of a, and let

x1, . . . , xd, y be local coordinates for U ×R. Then the map

π∗ : Tank(M ×R, G, ã) → Tank(M,X, a)

is injective if and only if the tangent

∂

∂y

∣∣∣∣
ã

: g 7→ ∂g

∂y
(ã)
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does not belong to Tank(M ×R, G, ã).

Proof: Let ∂ ∈ Tank(M ×R, G, ã). We have π∗∂ = 0 if and only if ∂ is a sum of terms

∂|i|+j

∂xi∂yj

(— evaluated at ã), all of which actually involve a ∂
∂y , i.e. have j ≥ 1. Thus, taking

account of the way the module action works, if we have a ∂ 6= 0 with π∗∂ = 0, then

a suitable polynomial multiple p • ∂ is exactly ∂
∂y , and thus ∂

∂y ∈ Tank(M ×R, G, ã).

QED

3. We say that a ray Tank(M,X, a) is of e–dimensional type if there is a coordinate

map (i.e. a Ck diffeomorphism) x : U → Rd of a neighbourhood U of a onto Rd such

that x∗ maps Tank(M,X, a) into Tank(Rd,Re, 0) . It is easy to see that Theorem 1

may be rephrased in the following form:

Corollary 3.3. A closed subset X of a Ck manifold M is contained in some e–dim-

ensional Ck submanifold of M if at each point a ∈ X the ray Tank(M,X, a) is of

e–dimensional type.

4. Proof of Necessity.

Throughout this section, let M be a Ck–manifold, X a closed subset of M and a ∈ X.

Lemma 4.1. Ik(a)k+1 contains all the functions in Ck(M) that vanish near a.

Proof: Let g ∈ Ck(M) be zero on a neighbourhood U of a. Let W be a compact

neighbourhood of a that is included in U . Let h ∈ Ck(M) satisfy h ≡ 0 on W , and

h ≡ 1 off U . Then h ∈ I(a), and g = hkg. Thus g ∈ I(a)k+1. QED

Corollary 4.2. Let f, g ∈ Ck(M). If f = g on a neighbourhood of a, then

∂f = ∂g

for all ∂ ∈ Tank(M,X, a). QED

Lemma 4.3 (Localness of Tangent Lemma). Let U be an open subset of M such

that a ∈ U . Then the map

i∗ : Tank(U,X ∩ U, a) → Tank(M,X, a),
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induced by the inclusion i: U → M , is an isomorphism.

Proof: For ε ∈ Tank(U,X ∩ U, a), i∗(ε) is defined by

i∗(ε)(f) = ε(f |U)

for f ∈ Ck(M). To define a function inverse to i∗, let W ⊆ U be a compact neighbour-

hood of a and let φ ∈ Ck(M) be a function such that φ ≡ 1 on W , φ ≡ 0 off U . The

function E : Ck(U) → Ck(M) defined by setting, for g ∈ Ck(U),

E(g)(x) =

{
g(x)φ(x), x ∈ U

0, x 6∈ U

is linear and continuous. Let j denote the restriction to Tank(M,X, a) of the map from

Ck(M)∗ to Ck(U)∗ induced by E. Then, for ∂ ∈ Tank(M,X, a), j(∂) ∈ Ck(U)∗ is defined

by

j(∂)(g) = ∂(E(g)), ∀g ∈ Ck(U).

Clearly,

j : Tank(M,X, a) → Tank(U,X ∩ U, a),

and (making use of Corollary 4.2) it is easy to show that j is inverse to i. QED

Remark. Using this Lemma one also sees that the image F∗∂ of a tangent under a Ck

map F depends only on the germ of the map F at pt∂.

Lemma 4.4. Let e ≤ d, let X be a closed subset of Re, and let a ∈ X. Then the map

i∗ : Tank(Re, X, a) → Tank(Rd, X, a)

induced by inclusion is an isomorphism.

Proof: There is no loss of generality in assuming that a = 0. In view of the identification

Tank(Rd, X, 0) =

∂ =
∑
|i|≤k

αi∂
i
∣∣
0

: ∂ ⊥ I(X)

 ,

it is sufficient to show surjectivity. Fix

∂ =
∑
|i|≤k

αi∂
i ∈ Tank(Rd, X, 0).
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If ij 6= 0 for some j > e, then xi ∈ I(Re). It follows that xi ∈ I(X), and so αi =

(i!)−1∂xi = 0. Thus ∂ ∈ Tank(Re, X, 0). QED

Lemma 4.5. Let N be a closed Ck–submanifold of M such that X ⊆ N . Then the

inclusion map of N into M induces an isomorphism

Tank(M,X, a) ∼= Tank(N,X, a).

Proof: If U is any open subset of M such that a ∈ U , then N ∩U is an open subset of

N and by Lemma 4.3,

Tank(M,X, a) ∼= Tank(U,X ∩ U, a)

Tank(N,X, a) ∼= Tank(N ∩ U,X ∩ U, a).

The required isomorphism is established by showing that the map

i∗ : Tank(N ∩ U,X ∩ U, a) → Tank(U,X ∩ U, a)

induced by inclusion is bijective, for the open subset U of M chosen in the following

way.

Let d = dimM and e = dimN . Take U to be an open neighbourhood of a in M

such that there exists a bijective map F : U → Rd, F and F−1 have class Ck,

F (N ∩ U) = {(x1, . . . , xd) ∈ Rd : xe+1 = . . . = xd = 0}

= Re, say,

and F (a) = 0 ∈ Rd. This is possible because N is a Ck–submanifold of M .

Let Y = F (X ∩ U). Then Y is a closed subset of Re, and

Tank(U,X ∩ U, a) ∼= Tank(Rd, Y, 0).

Since G = F |(N ∩ U) maps N ∩ U bijectively onto Re and G and G−1 are of class Ck,

we have

Tank(N ∩ U,X ∩ U, a) ∼= Tank(Re, Y, 0).

Thus, using Lemma 4.4, we have the diagram of isomorphisms:

Tank(M,X, a)x i

Tank(U,X ∩ U, a) F∗−→ Tank(Rd, X, 0)x i
x i

Tank(N ∩ U,X ∩ U, a) G∗−→ Tank(Re, Y, 0)y i

Tank(N,X, a)

15



and the result follows. QED

In the light of this lemma, it is not important which containing manifold M is used

to compute Tank(M,X). Consequently, we normally suppress reference to M , and

denote Tank(M,X) simply by TankX (and Tank(M,X, a) by Tank(X, a)).

Proof of Necessity. In view of functoriality (section 3) and localness (Lemma

4.3), it suffices to prove the theorem for the case where M = Rd.

Fix a ∈ X, and let ã = (a, f(a)) be the point above it on graphf .

Inclusion i: Rd → Rd+1 induces an isomorphism

i∗ : Tank(Rd, X, a) → Tank(Rd+1, X, a),

by Lemma 4.4. Let g ∈ Ck(Rd) have g|X = f . Define F : Rd+1 → Rd+1 by

F (x, y) = (x, y + g(x))

for all x ∈ Rd, y ∈ R. Then F is a Ck–map, F is bijective, and the inverse map F−1

defined by

F−1(x, y) = (x, y − g(x))

is also a Ck–map. Further, F and F−1 are morphisms in the category T. By functoriality,

the induced map

F∗ : Tank(Rd+1, X, a) → Tank(Rd+1, graphf, ã)

is an isomorphism. Now

π ◦ F ◦ i = 1Rd ,

so

π∗ ◦ F∗ ◦ i∗ = 1.

Since Tank(Rd, X, a) is a finite–dimensional vector space, and Tank(Rd+1, graphf, ã)

has the same dimension, and π∗ has a right inverse, it follows that π∗ is bijective. QED

The Localness of Tangent Lemma shows that the condition that π∗ be bijective is

a local one. So also is the extension problem:
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Lemma 4.6 (Localness of Extension). Let X be a closed subset of a Ck manifold

M , and let f : X → R be continuous. Suppose that for each point a ∈ X there

exists an open neighbourhood Ua of a and a Ck function ga : Ua → R such that

ga|Ua ∩X = f |Ua ∩X. Then f has a Ck extension to M .

Proof. Take a Ck (locally–finite) partition of unity {φn} on a neighbourhood of X in

M , subordinate to the covering

{Ua : a ∈ X}.

Each φn maps some Uan
to R and is supported on a compact subset of Uan

. The

functions hn = gan
· φan

, extended by zero, are Ck functions on M , so the function

g =
∑

n hn provides a Ck extension of f to M . QED

It follows from this that we need only prove Theorem 1 in the case M = Rd.

5. Calculation of Tank.

In this section, X is a closed subset of Rd, a ∈ X, and Tank(X, a) means

Tank(Rd, X, a). We will also find it convenient to use the notation

〈∂1, . . . , ∂m〉

to represent the R[x]–module generated by the tangents ∂1 ,. . ., ∂m. By Lemma 4.3,

Tank(X, a) depends only on the germ of X at a. Also, if X agrees near a with an

m-dimensional Ck-submanifold of Rd, then by applying Lemma 4.4 and the method of

proof of Theorem 1, we see that a suitable perpendicular projection p will induce an

isomorphism of Tank(X, a) onto Tank(Rm, 0), so we may compute Tank(X, a), using

(p∗)−1.

For example, if we consider

X = {(x, y, z) ∈ R3 : z = x + xy + x3}

at a = 0, then π : (x, y, z) 7→ (x, y) induces π−1 : (x, y) 7→ (x, y, x+xy +x3). If we take,

for instance, Tan3(X, 0), it equals

π−1
∗ Tan3(R2, 0) = π−1

∗

〈
∂3

∂x3
,

∂3

∂x2∂y
,

∂3

∂x∂y2
,

∂3

∂y3

〉
=

〈
π−1
∗

∂3

∂x3
, π−1

∗
∂3

∂x2∂y
, π−1

∗
∂3

∂x∂y2
, π−1

∗
∂3

∂y3

〉
,
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and, for instance,

π−1
∗

∂3

∂x3
f(x, y, z) =

∂3

∂x3
f(x, y, x + xy + x3)

= fxxx + 3fzxx + 3fzzx + fzzz + 6fz,

so that

π−1
∗

∂3

∂x3
=

∂3

∂x3
+ 3

∂3

∂x2∂z
+ 3

∂3

∂x∂z2
+ 6

∂

∂z
.

However, these X are very special, and we need a method for dealing with general sets

X.

We denote by Tank(X, a)⊥ the vector space

{p(x1, . . . , xd) ∈ R[x]k : ∂p = 0, ∀∂ ∈ Tank(X, a)}.

Since Tank(X, a) is linearly isomorphic to a subspace of R[x]†k, and dimR[x]k < ∞, we

obtain:

Lemma 5.1. Tank(X, a) = [Tank(X, a)⊥]⊥ whenever X ⊆ Rd is closed and a ∈ X.

Thus, if we know that polynomials p1, . . . , pn belong to Tank(X, a)⊥, then we de-

duce that

Tank(X, a) ⊆ {p1, . . . , pn}⊥.

This provides a way to come at Tank(X, a) from above, as long as we can test polyno-

mials for membership in Tank(X, a)⊥. We shall give such a test, shortly.

We denote by Jk(a) the Ck–ideal consisting of all those functions f ∈ Ck that are

flat of order k at the point a, i.e.

∂if(a) = 0, ∀|i| ≤ k.

It is easily deduced from Taylor’s theorem that Jk(a) may also be described as the

closure in Ck of the ideal of all those Ck functions that vanish on a neighbourhood of a.

It may thus be described in Function Algebra terms as the minimal closed ideal with

hull {a}.

Lemma 5.2. Ik(X) + Jk(a) is a closed subspace of Ck.

Proof: Ck/Jk(a) is a finite dimensional Hausdorff topological vector space, hence all its

subspaces are closed in the quotient topology. The quotient map

q : Ck → Ck/Jk(a)
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is continuous, hence

Ik(X) + Jk(a) = q−1 Ik(X) + Jk(a)
Jk(a)

is closed. QED

Lemma 5.3. Let p ∈ R[x]k. Then the following are equivalent:

(1) p ∈ Tank(X, a)⊥;

(2) there exists g ∈ Jk(a) such that p + g ∈ Ik(X).

Proof: Let (1) hold. Since Tank(X, a) = C∗∩(Ik(X)+Jk(a))⊥, the Separation Theorem

yields p ∈ closCk(Ik(X)+Jk(a)). The last lemma then yields p ∈ Ik(X)+Jk(a), whence

(2) holds. The converse is obvious. QED

This lemma provides a workable way to identify polynomials in Tank(X, a)⊥. Next,

we give a way to come at Tank(X, a) from below. For a sequence of sets An ⊂ Rd, and

a ∈ Rd, we write An → a if for all r > 0 there exists N ∈ N such that n > N ⇒ An ⊂
B(a, r). For µ =

∑n
i=1 λi∂i ∈ spanTank(Rd), with λi 6= 0 and pt(∂i) 6= pt(∂j), we set

sptµ = {pt(∂i) : i = 1, . . . , n}.

Lemma 5.4. Let ∂ ∈ Tank(Rd, a). Suppose there exists µn ∈ spanTank(X) such that

sptµn → a and µn → ∂ weak-star in Ck∗. Then ∂ ∈ Tank(X, a).

Proof: Since ∂ ∈ Tank(Rd, a), we have ∂ ⊥ Jk(a). Since µn ∈ Ik(X)⊥, we have

∂ ∈ Ik(X)⊥. Thus ∂ ∈ Jk(a)⊥ ∩ Ik(X)⊥. QED

Corollary 5.5. Let ∂ ∈ Tank(Rd, a). Suppose there exists µn ∈ span{δx : x ∈ X} such

that sptµn → a and µn → ∂ weak-star in Ck∗. Then ∂ ∈ Tank(X, a). QED

It is perhaps tempting to suppose that all ∂ ∈ Tank(X, a) might be obtained as in

this corollary, but in general this fails. It may be necessary to iterate the construction

several times, using limits of limits, limits of limits of limits, and so on. There is,

however, a limit (!) to the number of iterations needed. Fix X and a, and let

V0 =
⋃
{span{δx} : x ∈ X},

and, inductively,

Vn+1 = {∂ : ∃µn ∈ spanVn with sptµn → pt(∂) and µn → ∂ weak-star}.
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Then the Vn are stars and the vector spaces Vn(a) are increasing subspaces of the

finite-dimensional vector space Tank(Rd, a), hence they stabilize after a finite number

N(k, X, a) of steps. This argument does not yield an effective bound on N , since it

is a priori conceivable that the Vn(a) might be stationary for a range of n’s, and then

increase. Thus the following is interesting:

Problem. Find, if possible, N(k) such that for all X, VN(k) = Tank(X).

We know (see below) that N(1) = 2. There is no known control for N(2).

We can now see a practical way to completely determine Tank(X, a). If we establish

that ∂1, . . . , ∂m ∈ Tank(X, a) (by using Lemma 5.4) and that p1, . . . , pn ∈ Tank(X, a)⊥
(by using Lemma 5.3), and if

span{∂1, . . . , ∂m} = {p1, . . . , pn}⊥,

then Tank(X, a) is the common value.

Example 1. Let X ⊂ R.

(a) If a ∈ X is isolated, then Tank(X, a) = Rδa,∀k.

(b) If a ∈ X is an accumulation point, then Tank(X, a) = Tank(R, a).

Proof: (a) is clear.

(b) Choose xn → a, xn 6= a. Then (xn − a)−1(δxn
− δa) → d

dx , weak-star in Ck∗, so

the Corollary yields d
dx ∈ Tank(X, a). If k > 1, then

2(xn − a)−2

{
δxn − δa − (xn − a)

d

dx

}
→ d2

dx2
,

weak-star in Ck∗, so Lemma 5.4 yields d2

dx2 ∈ Tank(X, a). Continuing, we obtain

Tank(R, a) = span
{

δa,
d

dx
, . . . ,

dk

dxk

}
,

hence the result. QED

Example 2.

X =
{
(x, y) ∈ R2 : y2 = x3

}
, a = (0, 0).

For f ∈ C1, we have

f(h2, h3) = f(0, 0) + fx(0, 0)h2 + o(h2)
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whence δa, ∂
∂x |a ∈ Tan1(X, a). Also,

f(h2, h3)− f(h2,−h3) = 2h3fy(h2,−h3) + o(h3)

whence ∂
∂y |a ∈ Tan1(X, a). Thus

Tan1(X, a) = Tan1(R2, a).

Moving on to Tan2(X, a), we note first that for f ∈ C2 we have

f(h2, h3) = f(0, 0) + fx(0, 0)h2 + fy(0, 0)h3 +
1
2
fxx(0, 0)h4 + o(h4)

so δa, ∂
∂x , ∂

∂y , ∂2

∂x2 ∈ Tan2(X, a). Also

f(h2, h3)− f(h2,−h3) = fy(h2, 0)2h3 +
1
2
fyy(h2, 0)h6 + o(h6)

= fy(0, 0)h3 + fyx(0, 0)h5 + o(h5)

so ∂2

∂x∂y ∈ Tan2(X, a). In the other direction, y2 ∈ Tan2(X, a)⊥, because −x3 ∈ J2(a)

and y2 − x3 ∈ I2(X). Since

{
y2

}⊥
= span

{
δa,

∂

∂x
,

∂

∂y
,

∂2

∂x2
,

∂2

∂x∂y

}
,

we conclude that Tan2(X, a) equals the common value. QED

Example 3.

X =
{
(x, y) ∈ R2 : y2 = x3, y ≥ 0

}
, a = (0, 0).

As in the last example, we see that δa, ∂
∂x ∈ Tan1(X, a) and δa, ∂

∂x , ∂
∂y , ∂2

∂x2

∈ Tan2(X, a). But this time, ∂
∂y /∈ Tan1(X, a). In fact, the nonnegative function |x| 32

belongs to J1(a) and y − |x| 32 = 0 on X, hence y ∈ Tan1(X, a)⊥, and we conclude that

Tan1(X, a) = span
{

δa,
∂

∂x

}
.

Similarly, |x| 52 belongs to J2(a) and xy− |x| 52 = 0 on X, so xy belongs to Tan2(X, a)⊥,

as does y2, so

Tan2(X, a) = span
{

δa,
∂

∂x
,

∂

∂y
,

∂2

∂x2
,

}
.

QED
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6. Tank and other tangent concepts.

First, we compare Tank with the classical tangent concepts of Whitney, Denjoy and

Zariski.

Let X ⊂ Rd be closed, and a ∈ X. A vector u ∈ Rd is called

(1) a Whitney unit tangent if there exist xn ∈ X, xn 6= a, xn → a, with

|xn − a|−1(xn − a) → u;

(2) a Denjoy unit tangent if there exist xn, yn ∈ X, xn 6= yn, xn → a, yn → a, with

|xn − yn|−1(xn − yn) → u;

(3) a Zariski tangent vector if

u · ∇f(a) = 0, ∀f ∈ I1(X).

Let us denote the span of the Whitney unit tangents by W (X, a), the span of the

Denjoy unit tangents by D(X, a), and the space of Zariski tangent vectors by Z(X, a).

Let
w(X, a) = dim W (X, a),

d(X, a) = dim D(X, a),

z(X, a) = dim Z(X, a).

Each Whitney unit tangent is a Denjoy unit tangent, but the converse fails; consider,

for instance, the set xy = 0 in R2. In general we have

W ⊂ D ⊂ Z.

Each inclusion may be proper. The pair (X, a) of Example 2 above has w = 1 and

d = 2. It takes a little more effort to arrange d 6= z:

Example 4.

X = {(0, 0)} ∪
{(

1
n

, 0
)

: n ∈ N
}

∪
{(

1
n

+
1

(2m)!
, 0

)
: n, m ∈ N,m > n

}
∪

{(
1
n

+
1

(2m + 1)!
,

1
n(2m + 1)!

)
: n, m ∈ N,m > n

}
,
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and a = (0, 0).

It is straightforward to check that at a, the set of Denjoy unit tangents is {(±1, 0)},
so d(a) = 1. At the point an = ( 1

n , 0), the set of Whitney unit tangents is{
(1, 0),

(
n√

n2 + 1
,

1√
n2 + 1

)}
,

hence w(an) = 2, hence d(an) = z(an) = 2. The dimension z(x) cannot jump down, so

dimz(a) ≥ lim
n↑∞

z(an) = 2,

and z(a) = 2.

In general, the Zariski tangent space is essentially the pure first-order part of

Tan1(X, a):
Tan1(X, a) = Rδa + {f 7→ u · ∇f(a) : u ∈ Z(X, a)}

' Rδa ⊕ Z(X, a).

So Tank(X, a) may be described as the natural extension of the Zariski tangent space

to higher orders.

The space D(X, a) may also be regarded as the space of continuous point derivations

on a certain algebra. In [28] it was shown that D(X, a) is isomorphic to the space of

(pure) first-order continuous point derivations on the space D1(X) = closLip(1,X)C1. It

was also shown that the star associated to D(X) is dense in the star associated to Z(X).

See below.

Each compact subset of the unit circle S1 is the set of Whitney unit tangents for

some (X, a). Each compact subset of S1 symmetric under reflection in the origin is the

set of Denjoy unit tangents for some (X, a).

Regarded as differential invariants of the pair (X, a), the numbers w, d and z have

different powers of discrimination. For instance, w distinguishes y2 − x3 = 0 from

y2−x2 = 0, whereas d and z do not; d and z distinguish y2−x3 = 0 from y = 0 whereas

w does not; d distinguishes the pair (X, a) of Example 4 from (R2, a), whereas z does

not.

For the set xy(x2 − y2) = 0, the set of Whitney unit tangents distinguishes it from

y = 0 and from R2 at (0,0), and none of the other classical invariants does this.

The collection of Tank(X, a)’s and the associated invariant numbers such as

τk(X, a) = dimTank(X, a)
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are superior to all the classical invariants. For instance, Tan2 distinguishes y2 − x3 = 0

from y2 − x2 = 0; τ1 distinguishes y2 − x3 = 0 from y = 0; τ2 distinguishes the pair

(X, a) of Example 4 from (R2, a); τ1 distinguishes xy(x2 − y2) = 0 from y = 0; τ4

distinguishes xy(x2 − y2) = 0 from R2.

A couple of these remarks will bear elaboration. First, we have the following:

Lemma 6.1. If u is a Whitney unit tangent to X at a, and k ∈ N, then there exists

∂ ∈ Tank−1(Rd, a) such that (u · ∇)k + ∂ ∈ Tank(X, a).

Remark: We call a tangent of the form (u · ∇)k + ∂ a top-order pure tangent.

Proof of Lemma. There exist xn ∈ X such that xn → a and |xn−a|−1(xn−a) →
u. Let hn = xn − a. Then for f ∈ Ck we have

f(xn) = f(a) + hn · ∇f(a) + . . . +
1
k!

(hn · ∇)kf(a) + o(|hn|k).

Let un = |hn|−1hn = u + εn, dn = |hn|. Then

f(xn) = f(a) + u · ∇f(a)dn + εn · ∇f(a)dn

+
1
2
(u · ∇)2f(a)d2

n +
1
2
(u · ∇)(εn · ∇)f(a)d2

n +
1
2
(εn · ∇)2f(a)d2

n

+ · · ·

+
1
k!

(u · ∇)kf(a)dk
n + o(dk

n).

From this relation we can peel off various tangents at a. First, we get u · ∇f(a).

Next, it depends on the relative sizes of |εn| and dn. Removing some xn, if need be,

we may assume that |εn|
dn

→ 0 or dn

|εn| → 0 or εn

dn
→ v ∈ Rd. If |εn|

dn
→ 0, we get

(u · ∇)2 ∈ Tan2(X, a). If dn

|εn| → 0, we may assume that εn

|εn| → v ∈ Rd, and we get

v · ∇ ∈ Tan2(X, a) and then (u · ∇)2 ∈ Tan2(X, a). If εn

dn
→ v ∈ Rd, then we get

(u · ∇)2 + 2(v · ∇) ∈ Tan2(X, a). With the third order terms, it is necessary to consider

further cases, but the pattern continues: we may pick up additional first or second order

pdo’s, but we get, at least, (u · ∇)3 + ∂ for a ∂ of order less than 3. We omit further

details. QED

One of the numerical invariants we may associate to Tank(X, a) is the dimension pk

of the span of those u ∈ Rd such that (u ·∇)k +∂ ∈ Tank(X, a) for some ∂ of order k−1.

This is an invariant, because a T-morphism φ: (Rd, X, a) → (Rd, Y, b), when restricted

to and projected on the k-th order homogeneous tangents, is k-linear, equal to the k-th

symmetric product of its derivative. Hence it maps objects of the form

(u · ∇)k + ∂
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with order ∂ < k to objects of the form

(v · ∇)k + ∂′

where v = Dφ(a)u and order ∂′ < k.

In the cases of y2 − x3 = 0 and y2 − x2 = 0, at the origin, the first has p2 = 1 and

the second has p2 = 2.

As regards xy(x2 − y2) = 0 and R2, observe that the fourth order polynomial

xy(x2 − y2) ∈ Tan4(X, 0)⊥, so Tan4(X, 0) 6= Tan4(R2, 0). More generally, we have the

following:

Example 5. Let X be contained in the union of k nonsingular Ck-curves in R2 that

meet at a. Then Tank(X, a) 6= Tank(R2, a).

To see this, choose g1, . . . , gk ∈ Ck such that gi = 0 on X and ∇gi(a) 6= (0, 0). Set

ui = ∇gi(a), and let ∂ denote the tangent

f 7→ [(u1 · ∇) . . . (uk · ∇)f ](a).

Then the product g = g1 . . . gk belongs to Ck, and is annihilated by Tank(X, a), but

∂f = |u1|2 . . . |uk|2 6= 0.

Thus ∂ ∈ Tank(R2, a) ∼ Tank(X, a). QED

Example 3 shows that Tan2 can distinguish the top half of y2 − x3 = 0 from the

right half axis. It thus possesses a discriminating power superior to all the classical

tangent spaces.

Next, let us compare Tank with the vector bundles of Pohl and Feldman.

The star TankM is ⋃
a∈M

Tank(M,a).

The corresponding disjoint union

T k(M) =
⋃̇

a∈M

Tank(M,a)

is a vector bundle. The subsets

T k(M,X) =
⋃̇

a∈M

Tank(M,X, a)
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corresponding to closed subsets X ⊂ M are not, in general, vector bundles, because

they are not locally–trivial, but if X is a Ck–submanifold of M , then T k(M,X) is a

sub–bundle of T k(M). These bundles were introduced and studied by Pohl in his thesis,

and have been used by Feldman to study higher–order connections [16, 30, 31]. One

could expound the results of the present paper using the framework of the bundle–like

objects T k(M,X). Our main reason for adopting the present exposition is that the set

Tank(M,X) is in any case unavoidable, because it is essential at various points to asso-

ciate elements of Ck∗ to tangents (— each nonzero element t ∈ T k(M,X) corresponds

uniquely to a functional ∂ ∈ Tank(M,X)). The present approach avoids an extra layer

of notation.

Finally, let us describe the relationship between Tank(M,X, a) and Glaeser’s space

of paratangents of order k [17].

Following Glaeser, we say that a Ck submanifold N of M gives a minimal Ck

imbedding for X near a if (1) the germ of X at a is contained in N , and (2) no Ck

submanifold of smaller dimension than N contains the germ of X at a. It is clear that

minimal Ck imbeddings always exist, for any X and a.

Lemma 6.2. (Glaeser) Suppose that N is a minimal Ck imbedding for X near a, and

N ′ is another Ck submanifold of M that contains X. Then TaN ⊂ TaN ′.

We repeat the simple proof, for the reader’s convenience.

Proof. Suppose there existed ∂ ∈ TaN ∼ TaN ′. Then, near a, N ∩ N ′ would be a

Ck submanifold of smaller dimension than N , and would contain the germ of X at a,

contradicting the minimality of N . QED

Thus TaN is the same for all minimal embeddings N of X near a. The paratangent

of order k of X at a is defined to be this common TaN . We denote it by ptank(M,X, a).

Evidently, from the lemma, we also have that ptank(M,X, a) is the intersection

of all the TaN , taken over those Ck submanifolds N of M that contain X.

The relationship between Tank(M,X, a) and ptank(M,X, a) is the following.

Lemma 6.3. For each Ck manifold M , each closed set X ⊂ M , and each point a ∈ M ,

we have

Rδa ⊕ ptank(M,X, a) = Tan1(M,a) ∩ Tank(M,X, a).

Proof. One direction of this is explicitly shown by Glaeser [17, p.55, Corollary 1] (apart

from the unwinding of the definitions): If g is a Ck function on M that vanishes on
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X, and there existed a ∂ ∈ ptank(M,X, a) with ∂f 6= 0, then a is not a critical point

of g, so the implicit function theorem tells us that near a, the set N = g−1(0) is a Ck

submanifold, and thus by Lemma 6.2,

ptank(M,X, a) ⊂ Tan1(M,N, a),

so ∂ ∈ Tan1(M,N, a), so ∂g = 0, which is a contradiction. Thus

ptank(M,X, a) ⊂ Tank(M,X, a),

and that shows that the lhs is contained in the rhs.

To see the other direction, suppose that

∂ ∈ Tan1(M,a) ∩ Tank(M,X, a),

and let N be a minimal Ck immersion for X near a. If it could happen that ∂ 6∈
Rδa ⊕ TaN , then there would exist a function g ∈ Ck(M) with g|N = 0 and ∂g 6= 0.

But then g ∈ Ik(X) and ∂g 6= 0, which is impossible. QED

We have the following corollary to Lemma 3.2, where, as usual, we use the notation

ã for the point (a, f(a)) on the graph G of the continuous function f : X → R.

Corollary 6.4. The map

π∗ : Tank(M ×R, G, ã) → Tank(M,X, a)

is injective if and only if the restriction of π∗ to ptank(M ×R, G, ã) is injective.

Note that π∗ (in common with all induced maps) does not increase order, and hence

a priori maps ptank(M × R, G, ã) into the span of Rδa and ptank(M,X, a). In fact,

since it is a projection map, it is easy to see that no point masses can occur in the

image, so it actually maps ptan1 to ptan1.

Proof. It is clear that the condition is necessary. For the converse, it suffices to note

that ∂
∂y |ã ∈ Tan1(M,a), and apply Lemma (3.2). QED

We are now in a position to prove sufficiency.
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7. Proof of Sufficiency.

It is convenient to state and prove an amplified version of Theorem 1.

Theorem 1′. Let M be a Ck manifold, X a closed subset of M , and f : X → R be a

continuous function. Let G denote the graph of f . Then the following four conditions

are equivalent:

(1) f has a Ck extension to M ;

(2) π∗ : Tank(M ×R, G) → Tank(M,X) is a bijection.

(3) π∗ : Tank(M ×R, G) → Tank(M,X) is an injection.

(4) π∗ : ptank(M ×R, G, a) → ptank(M,X, a) is injective for each a ∈ X.

Proof: We showed that (1) implies (2) in section 4. That (2) implies (3) is obvious,

and Corollary 6.4 states that (3) implies (4). It remains to prove that (4) implies (1).

Suppose that (4) holds. Fix a ∈ X. Let d =dimM . The space ptank(M,X, a) has

dimension at most d, so the same is true for ptank(M ×R, G, ã). Let Ñ be a minimal

Ck imbedding for G near ã, and suppose its dimension is r. Since ∂
∂y |ã 6∈ TaÑ , the

projection π maps a neighbourhood of a bijectively onto an r–dimensional submanifold

N ⊂ M , which must then be a minimal imbedding for X near a. Replacing Ñ by

Ñ ∩π−1(N), if need be, we see that Ñ is the graph of a Ck function f1 : N → R, which

extends f from N ∩X to N . Let fa be a Ck extension of f1 to a tubular neighbourhood

Ua of N in M (— the existence of such extensions of smooth functions from smooth

submanifolds is immediate from one of the standard alternative definitions of smooth

manifold). We have now extended f to a neighbourhood Ua of a.

The existence of a global extension of f now follows from Lemma 4.6. QED
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Remarks.

1. It remains an interesting problem to give a constructive proof of the theorem. We

have worked out explicit constuctions for the case when k = 1 (C1 extensions in any

dimension) and the case k = 2, d = 1 (C2 extensions in 1 dimension). These will appear

elsewhere.

The first author has previously provided a couple of explicit C1 extension theorems

[27,28], but the methods used there have no hope of dealing with C2 extensions. The

matter is closely connected with the lack of anything corresponding to a Besicovitch

structure theory ([15], section 3.3) for smoothness 2 or greater.

We believe that the Tank structure will prove crucial to the successful completion

of the constructive extension programme, and that, for instance, the paratangent alone

does not carry sufficient information to allow a reasonable extension formula.

2. In section 5 we described practical procedures for computing Tank(M,X, a) in

explicitly–described examples. In view of the theorem just proved, it is of interest to

derive procedures for computing the paratangent spaces ptank(M,X, a).

The definition of ptank(M,X, a) is completely nonconstructive, but its constructi-

bility is a consequence of Lemma 6.3 and the constructibility of

Tank(M,X, a). The description of ptank(M,X, a) as the space of first–order distribu-

tions supported at a that are weak–star limits in Ck(M)∗ of linear combinations of

point masses from X [17, p.56] is not constuctive.

We recall two results from section 5. Corollary 5.5 allows us to extend progressively

our stock of elements of

Tank(M,X, a). Lemma 5.3 allows us to develop a list of annihilators of Tank(M,X, a).

If linearly–independent k–order tangents ∂1,. . .,∂n belong to Tank(M,X, a) and if func-

tions p1,. . .,pm annihilate Tank(M,X, a) and have linearly–independent cosets in

Ck(M)/Jk(a), and if

n + m = dimTank(M,a)
(

=
(

k + d

k

))
then

Tank(M,X, a) = spanR{∂1, . . . , ∂n}.

Recall that Ck(M)/Jk(a) is essentially the finite–dimensional local algebra R[x]0,k. We

can apply these results to construct elements of ptank(M,X, a) and of ptank(M,X, a)⊥.

If ∂1, ∂2, . . ., ∂n are linearly independent elements of ptank(M,X, a) and p1, . . ., pm
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annihilate ptank(M,X, a) and have linearly–independent cosets in Ck(M)/J1(M),

and if n + m =dimM , then

ptank(M,X, a) = spanR{∂1, . . . , ∂n}.

For instance, take M = R2, a = (0, 0), k = 2, and

X = {(x, 0) : x < 0} ∪ {(x, x2) : x ≥ 0}.

Then δ(x,0) (x < 0) and δ(x,x2) (x ≥ 0) belong to Tan2(M,X), so Lemma 5.5 tells us

that

lim
x↑0

δ(x,0) − δ(0,0)

x
=

∂

∂x
|a,

lim
x↑0

δ(2x,0) − 2δ(x,0) + δ(0,0)

x2
=

∂2

∂x2
|a,

lim
x↓0

δ(2x,4x2) − 2δ(x,x2) + δ(0,0)

x2
=

∂2

∂x2
|a + 2

∂

∂y
|a

belong to Tan2(M,X, a), hence ∂
∂x |a and ∂

∂y |a belong to ptan2(M,X, a), hence

ptan2(M,X, a) = TaR2.

Thus the function π∗, induced by π : (x, y) 7→ x, is not injective, as is to be expected,

since X is the graph of a non–C2 function.

3. For a non–closed set X, when

Tank(M,X) = Tank(M, closX),

Theorem 1′ remains true if we replace the assumption of continuity on f by boundedness.

4. It is worth remarking that one can quite easily formulate a superficially reasonable–

looking necessary and sufficient condition for the existence of a Ck extension, which

involves only the values of f on X.

Regarding X as a subset of Ck(M)∗ (via the map a 7→ δa), we may refer to spanX.

Since the δa are linearly independent, f determines a linear map f] : spanX → R. We

have the following:

Proposition. f has a Ck extension to M if and only if f] is weak–star continuous on

spanX.

Proof. Only if is obvious. The converse is a simple application of the Hahn–Banach

theorem for locally–convex spaces: given that f] is weak–star continuous on spanX, it
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has a weak–star continuous extension to Ck∗, and this extension is of the form T 7→ T (g)

for some g ∈ Ck, whence g|X = f . QED

The reason this is not really interesting is that it is useless without a way to check

weak–star continuity of f]. In effect, useful theorems like Whitney’s, and those of the

present paper, provide manageable sufficient conditions for this weak–star continuity.
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