Reducing Conjugacy in the full diffeomorphism group of \mathbb{R} to conjugacy in the subgroup of orientation-preserving maps

Anthony G. O'Farrell
Mathematics Department
NUI, Maynooth
Co. Kildare
Ireland
and
Maria Roginskaya
Mathematics Department
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden

July 5, 2007

Abstract

Let Diffeo $=\operatorname{Diffeo}(\mathbb{R})$ denote the group of infinitely-differentiable diffeomorphisms of the real line \mathbb{R}, under the operation of composition, and let Diffeo ${ }^{+}$ be the subgroup of diffeomorphisms of degree +1 , i.e. orientation-preserving diffeomorphisms. We show how to reduce the problem of determining whether or not two given elements $f, g \in$ Diffeo are conjugate in Diffeo to associated conjugacy problems in the subgroup Diffeo ${ }^{+}$. The main result concerns the case when f and g have degree -1 , and specifies (in an explicit and verifiable way) precisely what must be added to the assumption that their (compositional) squares are conjugate in Diffeo ${ }^{+}$, in order to ensure that f is conjugated to g

^[${ }^{0}$ Mathematics Subject Classification: Primary 20E99, Secondary 20E36, 20F38, 20A05, 22E65, 57S25. Keywords: Diffeomorphism group, conjugacy, real line, orientation. Supported by SFI under grant RFP05/MAT0003. The authors are grateful to Ian Short for useful comments.]

by an element of Diffeo ${ }^{+}$. The methods involve formal power series, and results of Kopell on centralisers in the diffeomorphism group of a half-open interval.

1 Introduction and Notation

Let Diffeo $=\operatorname{Diffeo}(\mathbb{R})$ denote the group of (infinitely-differentiable) diffeomorphisms of the real line \mathbb{R}, under the operation of composition. In this paper we show how to reduce the conjugacy problem in Diffeo to the conjugacy problem in the index-two subgroup

$$
\text { Diffeo }^{+}=\{f \in \text { Diffeo }: \operatorname{deg} f=+1\}
$$

where $\operatorname{deg} f$ is the degree of $f(= \pm 1$, depending on whether or not f preserves the order on \mathbb{R}).

We set some other notation:
Diffeo ${ }^{-}:\{f \in$ Diffeo : $\operatorname{deg} f=-1\}$, the other coset of Diffeo ${ }^{+}$in Diffeo.
Diffeo $_{0}$: the subgroup of Diffeo consisting of those f that fix 0 .
Diffeo $_{0}^{+}:$Diffeo $_{0} \cap$ Diffeo $^{+}$.
fix (f) : the set of fixed points of f.
$f^{\circ 2}: f \circ f$.
f^{-1} : the compositional inverse of f.
$g^{h}: h^{-1} \circ g \circ h$, whenever $g, h \in \operatorname{Diffeo}(I)$. (We say that h conjugates f to g if $f=g^{h}$.)
-: the map $x \mapsto-x$.
We use similar notation for compositional powers and inverses in the group F of formally-invertible formal power series (with real coefficients) in the indeterminate X. The identity $X+0 X^{2}+0 X^{3}+\cdots$ is denoted simply by X.
$T_{p} f$ stands for the truncated Taylor series $f^{\prime}(p) X+\cdots$ of a function $f \in$ Diffeo. Note that T_{0} is a homomorphism from Diffeo_{0} to F, and $T_{0}(-)=-X$.

Typically, if f and g are conjugate diffeomorphisms, then the family Φ of diffeomorphisms ϕ such that $f=\phi^{-1} \circ g \circ \phi$ has more than one element. In fact Φ is a left coset of the centraliser C_{f} of f (and a right coset of C_{g}). For this reason, it is important for us to understand the structure of these centralisers. The problem of describing C_{f} is a special conjugacy problem - which maps conjugate f to itself? Fortunately, this has already been addressed by Kopell [K].

2 Preliminaries and Statement of Results

2.1 Reducing to conjugation by elements of Diffeo ${ }^{+}$

The first (simple) proposition allows us to restrict attention to conjugation using $h \in$ Diffeo $^{+}$.

Proposition 2.1 Let $f, g \in$ Diffeo. Then the following two conditions are equivalent:
(1) There exists $h \in$ Diffeo such that $f=g^{h}$.
(2) There exists $h \in$ Diffeo $^{+}$such that $f=g^{h}$ or $-\circ f \circ-=g^{h}$.

Proof. If (1) holds, and $\operatorname{deg} h=-1$, then $-\circ f \circ-=g^{k}$, with

$$
k(x)=h(-x)
$$

The rest is obvious.

2.2 Reducing to conjugation of elements of Diffeo ${ }^{+}$

The degree of a diffeomorphism is a conjugacy invariant, so to complete the reduction of the conjugacy problem in Diffeo to the problem in Diffeo ${ }^{+}$, it suffices to deal with the the case when $\operatorname{deg} f=\operatorname{deg} g=-1$ and $\operatorname{deg} h=+1$.

Let us agree that for the rest of this paper any objects named f and g will be direction-reversing diffeomorphisms, and any object named h a directionpreserving diffeomorphism.

Note that fix (f) and fix (g) are singletons.
If $f=g^{h}$, then $h(\operatorname{fix}(f))=$ fix (g), and (since Diffeo ${ }^{+}$acts transitively on \mathbb{R}) we may thus, without loss in generality, suppose that $f(0)=g(0)=h(0)=0$.

If $f=g^{h}$, then we also have $f^{\circ 2}=\left(g^{\circ 2}\right)^{h}, f^{-1}=\left(g^{-1}\right)^{h}$, and $f^{\circ 2} \in$ Diffeo $^{+}$.
We will prove the following reduction:
Theorem 2.2 Suppose $f, g \in$ Diffeo $^{-}$, fixing 0 . Then the following two condition are equivalent:

1. $f=g^{h}$ for some $h \in$ Diffeo $^{+}$.
2. (a) There exists $h_{1} \in \mathrm{Diffeo}_{0}^{+}$such that $f^{\circ 2}=\left(g^{\circ 2}\right)^{h_{1}}$; and
(b) Letting $g_{1}=g^{h_{1}}$, there exists $h_{2} \in$ Diffeo $^{+}$, commuting with $f^{\circ 2}$ and fixing 0 , such that $T_{0} f=\left(T_{0} g_{1}\right)^{T_{0} h_{2}}$.

2.3 Making the conditions explicit

To complete the project of reducing conjugation in Diffeo to conjugation in Diffeo ${ }^{+}$, we have to find an effective way to check condition 2(b). In other words, we have to replace the nonconstructive "there exists $h_{2} \in$ Diffeo $^{+}$" by some condition that can be checked algorithmically. This is achieved by the following:

Theorem 2.3 Suppose that $f, g \in$ Diffeo $^{-}$both fix 0 , and have $f^{\circ 2}=g^{\circ 2}$. Then there exists $h \in$ Diffeo $^{+}$, commuting with $f^{\circ 2}$, such that $T_{0} f=\left(T_{0} g\right)^{T_{0} h}$ if and only if one of the following holds:

1. $\left(T_{0} f\right)^{\circ 2} \neq X$;
2. 0 is an interior point of fix $\left(f^{\circ 2}\right)$;
3. $\left(T_{0} f\right)^{\circ 2}=X, 0$ is a boundary point of fix $\left(f^{\circ 2}\right)$, and $T_{0} f=T_{0} g$.

Note that the conditions 1-3 are mutually-exclusive. We record a couple of corollaries:

Corollary 2.4 Suppose $f, g \in$ Diffeo ${ }^{-}$, fixing 0 , and suppose $\left(T_{0} f\right)^{\circ 2} \neq X$ or $0 \in \operatorname{intfix}(f)$. Then $f=g^{h}$ for some $h \in$ Diffeo $^{+}$if and only if $f^{\circ 2}=\left(g^{\circ 2}\right)^{h}$ for some $h \in$ Diffeo $^{+}$.

In case $\left(T_{0} f\right)^{\circ 2} \neq X$, any h that conjugates $f^{\circ 2}$ to $g^{\circ 2}$ will also conjugate f to g. In the other case covered by this corollary, it is usually necessary to modify h near 0 .

Corollary 2.5 Suppose $f, g \in$ Diffeo $^{-}$, fixing 0 , and suppose $\left(T_{0} f\right)^{\circ 2}=X$ and $0 \in b d y f i x(f)$. Then $f=g^{h}$ for some $h \in$ Diffeo $^{+}$if and only if $f^{\circ 2}=\left(g^{\circ 2}\right)^{h}$ for some $h \in$ Diffeo $^{+}$and $T_{0} f=T_{0} g$.

The last corollary covers the case where 0 is isolated in $\operatorname{fix}(f)$ and $T_{0} f$ is involutive, as well as the case where 0 is both an accumulation point and a and boundary point of fix (f)

3 Proofs

We begin by treating a special case:

3.1 Involutions

One possibility is that $f^{\circ 2}=\mathbb{1}$, i.e. f is involutive, and in that case so is any conjugate g. Conversely, we have:

Proposition 3.1 If τ is a proper involution in Diffeo, then it is conjugated to - by some $\psi \in$ Diffeo $^{+}$. Thus any two involutions are conjugate.

Proof. Let $\psi(x)=\frac{1}{2}(x-\tau(x))$, whenever $x \in \mathbb{R}$. It is straightforward to check that $\psi \in$ Diffeo $^{+}$, and $\psi(\tau(x))=-\psi(x)$ for each $x \in \mathbb{R}$. Thus ψ conjugates τ to - .

3.2 Proof of Theorem 2.2

Proof. . (1) \Rightarrow (2): Just take $h_{1}=h$ and $h_{2}=\mathbb{1}$.
$(2) \Rightarrow(1)$: We just have to show that f is conjugate to $g_{2}=g_{1}^{h_{2}}$, and we note that $g_{2}^{\circ 2}=\left(g_{1}^{\circ 2}\right)^{h_{2}}=f^{\circ 2}$.

Take

$$
k(x)=\left\{\begin{aligned}
x & , \quad x \geq 0 \\
g_{2}\left(f^{-1}(x)\right) & , \quad x<0
\end{aligned}\right.
$$

Then, since $T_{0} f=T_{0} g_{2}$, we have $T_{0}\left(g_{2} \circ f^{-1}\right)=X$, so $k \in$ Diffeo $^{+}$.
We claim that $f=g_{2}^{k}$. Both sides are 0 at 0 .
We consider the other two cases:
1°, in which $x>0$. Then

$$
g_{2}^{k}(x)=k^{-1}\left(g_{2}(k(x))\right)=\left(g_{2} \circ f^{-1}\right)^{-1}\left(g_{2}(x)\right)=f(x)
$$

2°, in which $x<0$. Then

$$
g_{2}^{k}(x)=g_{2}\left(g_{2}\left(f^{-1}(x)\right)\right)=f^{\circ 2}\left(f^{-1}\right)=f(x) .
$$

Thus the claim holds, and the theorem is proved.

3.3 The case when $f^{\circ 2}$ is not infinitesimally-involutive at 0

The nicest thing that can happen is that condition (b) of Theorem 2.2 is automatically true, once (a) holds. The next theorem shows this does occur in a generic case (read g_{1} for g):

Theorem 3.2 Suppose $f, g \in$ Diffeo $^{-}$, fixing 0 , with $f^{\circ 2}=g^{\circ 2}$. Suppose $\left(T_{0} f\right)^{\circ 2} \neq X$. Then $T_{0} f=T_{0} g$, and (by Theorem 2.2) f is conjugate to g.

Before giving the proof, we note a preliminary lemma:
Lemma 3.3 The first nonzero term after X in the (compositional) square of a series with multiplier -1 has odd index.

Proof. Let $S=-X+\cdots$ and $S^{\circ 2}=X \bmod X^{2 m}$. We claim that $S^{\circ 2}=X$ $\bmod X^{2 m+1}$. This will do.

Take $F=S-X$. Then $F \circ S=S^{\circ 2}-S=-F \bmod X^{2 m}$, so $F \circ S \circ F^{-1}=-X$ $\bmod X^{2 m}$, i.e. $F \circ S \circ F^{-1}=-X+c X^{2 m} \bmod X^{2 m+1}$, for some $c \in \mathbb{R}$. We calculate $F \circ S^{\circ 2} \circ F^{-1}=\left(F \circ S \circ F^{-1}\right)^{\circ 2}=X-c X^{2 m}+c(-X)^{2 m}=X \bmod$ $X^{2 m+1}$, so $S^{\circ 2}=X \bmod X^{2 m+1}$.

Proof of Theorem 3.2.

Proof. Let $q=g \circ f^{-1}$ and let $F=T_{0} f, G=T_{0} g$, and $Q=G \circ F^{-1}=T_{0}(q)$. Then, since

$$
q^{-1} \circ g=f=f^{\circ 2} f^{-1}=g \circ q
$$

and T_{0} is a group homomorphism, we get

$$
Q^{-1} \circ G=F=G \circ Q
$$

and deduce

$$
\begin{equation*}
Q \circ F \circ Q=F \tag{1}
\end{equation*}
$$

and $F^{-1} \circ Q \circ F=Q^{-1}$, so that Q is a reversible series, reversed by F, and Q commutes with $F^{\circ 2}$.

Note that (1) forces $Q=X\left(\bmod X^{2}\right)$.
Now we consider the cases.
1°. $f^{\prime}(0) \neq-1$. Letting $\lambda=f^{\prime}(0)$, there exists an invertible series W such that $F^{W}=\lambda X$. Letting $Q_{1}=Q^{W}$, we see that Q_{1} commutes with $\lambda^{2} X$, and hence is μX for some nonzero real μ. Since $Q_{1}=X\left(\bmod X^{2}\right)$ also, we get $\mu=1, Q_{1}=X, Q=X$, so $F=G$, and we are done.
$2^{\circ} . f^{\prime}(0)=-1$. We may choose $p \in \mathbb{N}$ and a nonzero $a \in \mathbb{R}$ such that

$$
F^{\circ 2}=X+a X^{p+1}\left(\bmod X^{p+2}\right)
$$

Since Q commutes with $F^{\circ 2}$, Lubin's Theorem [L, Cor. 5.3.2 (a) and Proposition 5.4] tells us that there is a $\mu \in \mathbb{R}$ such that

$$
Q=X+\mu X^{p+1}\left(\bmod X^{p+2}\right)
$$

and if $\mu=0$ then $Q=X$.
Suppose $\mu \neq 0$. Then by Lemma 3.3, p is even. But the first nonzero term after X in a reversible series has even index (cf. [Ka], or [O, Theorem 5], for instance, or calculate), so we have a contradiction. Hence, $\mu=0$, so $Q=X$, and we calculate again that $F=G$, as in 1°.

4 The case when $f^{\circ 2}$ is involutive on a neighbourhood of 0

Theorem 4.1 Suppose $f, g \in$ Diffeo $^{-}$, fixing 0, with $f^{\circ 2}=g^{\circ 2}$. Suppose 0 is an interior point of $\mathrm{fix}\left(f^{\circ 2}\right)$, i.e. f is involutive near 0 . Then there exists $h \in$ Diffeo $^{+}$, commuting with $f^{\circ 2}$, fixing 0 , with $T_{0} f=\left(T_{0} g\right)^{T_{0} h}$, and hence f is conjugate to g.

Proof. Let $h_{1}(x)=\frac{1}{2}(x-f(x))$, whenever $x \in \mathbb{R}$. Then $h_{1} \in$ Diffeo $^{+}$, and $h_{1}\left(f(x)=-h_{1}(x)\right.$ on $\mathrm{fix}\left(f^{\circ 2}\right)$, and hence on a neighbourhood of 0 . Modifying h_{1} off a neighbourhood of 0 , we may obtain $h_{2} \in$ Diffeo $^{+}$with $h_{2}(x)=x$ off fix $\left(f^{\circ 2}\right)$. It follows that h_{2} commutes with $f^{\circ 2}$.

Similarly, we may construct a function $h_{3} \in$ Diffeo $^{+}$that commutes with $g^{\circ 2}=f^{\circ 2}$ and has $h_{3}(g(x))=-g(x)$ on a neighbourhood of 0 . Thus $h=h_{3}^{-1} \circ h_{2}$ commutes with $f^{\circ 2}$ and has $h(f(x))=g(h(x))$ near 0 , so that $T_{0} f=\left(T_{0} g\right)^{T_{0} h}$, as required.

4.1 The Remaining Case

We shall need the following result from Kopell's paper [K, Lemma 1(b)]:
Lemma 4.2 Let $f, g \in$ Diffeo $^{+}$both fix 0 and commute. If $T_{0} f=X$ and 0 is not an interior point of fix (f), then $T_{0} g=X$ as well.

Proof.

Theorem 4.3 Let $f, g \in$ Diffeo $^{-}$, fixing 0 , with $f^{\circ 2}=g^{\circ 2}$, and let $T_{0} f$ be involutive. Suppose 0 is a boundary point of $\operatorname{fix}\left(f^{\circ 2}\right)$. Then f is conjugate to g if and only if $T_{0} f=T_{0} g$.

Proof. By Kopell's result, any $h \in$ Diffeo $^{+}$that commutes with $f^{\circ 2}$ and fixes 0 must have $T_{0} h=X$. Thus the result follows from Theorem 2.2

Between them, Theorems 3.2, 4.1 and 4.3 cover all cases, and complete the proof of Theorem 2.3.

References

[L] J. Lubin. Nonarchimedean dynamical systems. Compositio Mathematica 94 (1994) 321-46.
[K] N. Kopell. Commuting diffeomorphisms. pp. 165-84 in J. Palis + S. Smale (eds) Global Analysis. PSPM XIV. AMS. 1970.
[Ka] E. Kasner. Conformal classification of analytic arcs or elements: Poincaré's local problem of conformal geometry. Transactions AMS 16 (1915) 333-49.
[O] A.G. O'Farrell. Composition of involutive power series, and reversible series. Comput. Mathods Funct. Theory 8 (2008) 173-93.
e-mail:
anthonyg.ofarrell@gmail.com
maria@math.chalmers.se

