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Abstract

Given a group G, the conjugacy problem in G is the problem of giving an
effective procedure for determining whether or not two given elements f, g ∈ G
are conjugate. This paper is about the conjugacy problem in the groupG = D(I)
of all orientation-preserving diffeomorphisms of an interval I ⊂ R. The kernel
of this problem is the special case in which the diffeomorphisms f, g ∈ D(I) are
fixed-point-free on the interior J of I. The problem is trivial if I is open. We
present an effective way to approach it when I is half-open or compact.

1 Introduction

1.1 Objectives

We are going to work with orientation-preserving diffeomorphisms defined just
on various intervals (open, closed, or half-open, bounded or unbounded). We
denote the group of orientation-preserving diffeomorphisms of the interval I ⊂ R
by D(I). If an endpoint c belongs to I, then statements about derivatives at c
should be interpreted as referring to one-sided derivatives.

The conjugacy problem in the group of all diffeomorphisms of I can be
reduced to the conjugacy problem in the subgroup D(I) [OR], and this in turn
can be reduced to the special case of conjugacy on an interval between maps that
fix only the end(s) of the interval. The present paper focusses on this special
case. We shall describe a reasonably practical way to determine conjugacy.

There has been much work on this problem. Important steps are the work
of Sternberg, Takens, Sergeraert, Robbin, Mather (private communication),
Young, and Kopell, among others. There is a useful summary survey of progess
up to 1995 by Ahern and Rosay [AR]. See also references [S], [T], [SE], [RO],
[M], [KCG, Chapter 8], [KH, Chapter 2], [MS], [Y], [B], [ALY].

1



1.2 Notation

fix(f): the set of fixed points of f .

f◦n: the n-th iterate of f (i.e the n-th power in the group D(I)). We also use
it for negative n = −m, to denote the m-th iterate of the inverse function f◦−1.
The notation f◦0. denotes the identity map 11.

gh: h◦−1 ◦ g ◦ h, whenever g, h ∈ D(I). We say that h conjugates f to g if
f = gh.

1.3 Open Intervals

For open intervals, there are just two conjugacy classes of fixed-point-free maps:

Proposition 1.1 (Sternberg) Suppose I is an open interval and f and g are
fixed-point-free elements of D(I). Then f and g are conjugate in D(I) if and
only if their graphs lie on the same side of the diagonal.

In Sections 2-4 we study conjugacy on half-open intervals. This is the main
meat of the paper.

The results are summarised in Section 2. In Subsection 2.6 we use the results
about half-open intervals to address conjugacy in D(I), for compact intervals
I, for maps that are fixed-point-free on the interior J of I. We go on to give
a useful necessary condition (the “shape condition”), and to discuss flowability
for the compact case.

1.4 Remarks

Typically, if f and g are conjugate diffeomorphisms, then the family of diffeo-
morphisms φ such that f = φ◦−1 ◦ g ◦ φ is a left coset of the centraliser Cf of f
(and a right coset of Cg). The problem of describing Cf is a special conjugacy
problem — which maps conjugate f to itself?

There may be a great many conjugacies between two given conjugate dif-
feomorphisms. In the open-interval case, the centraliser of a fixed-point-free
diffeomorphism is very large, and is not abelian.

Kopell [K] showed that when I has one of its endpoints as a member, then
the centraliser of f must be quite small — it is a subgroup of a one-parameter
abelian group, and it may consist just of the iterates of f . An example was given
by Sergeraert [SE]; possibly this behaviour is “generic”. Kopell [K] showed that
it is generic when I is a compact interval. Thus there is a connection between
our subject and the question of when f embeds in a flow. For this, see also [SE].
We shall make one or two remarks about imbeddings in flows as we go along
(cf. Subsection 2.8 and Proposition 5.3).

2



2 Preliminaries, History and Main Result

2.1 The semigroups S±

Consider the conjugation of diffeomorphisms of a half-open interval I, assuming
that they are fixed-point free on the interior J of the interval. There is no loss
in generality in considering just the case I = [0,+∞), so we do that.

Consider f, g ∈ D([0,∞)), fixed-point-free on (0,∞). Under what circum-
stances does there exist an h ∈ D([0,∞)) with f = gh?

The set of all f ∈ D([0,∞)), that fix only 0 is the disjoint union of the two
subsets

S+ = {f : f(x) > x on (0,∞)}
S− = {f : f(x) < x on (0,∞)}

each of which is a sub-semigroup of D([0,∞)). Each of these semigroups is
preserved by conjugacy, i.e. is a union of conjugacy classes. Thus, for f to be
conjugated to g it is necessary that they belong to the same semigroup, S+ or
S−.

Note that f ∈ S+ is equivalent to f◦−1 ∈ S−, so that to characterize conju-
gacy it suffices to consider f ∈ S−.

Unless the contrary is indicated, we assume that both f and g belong to S−
for the remainder of this section.

2.2 The Hyperbolic Case

If f = gh, then g′(0) = f ′(0), i.e. f and g have the same “multipliers” at 0. If
the multiplier at 0 is not 1 (i.e. 0 is a hyperbolic fixed point), then Sternberg [S]
identified the multiplier as the sole conjugacy invariant, and deduced that the
centraliser of such a hyperbolic element is a one-parameter group.

2.3 Taylor Series

In general, there is a more elaborate necessary condition involving higher deriva-
tives, best expressed in terms of Taylor series: Let T0f denote the truncated
Taylor series of f about 0:

T0f =
∞∑

n=1

f (n)(0)
n!

Xn

(regarded as a formal power series in an indeterminate X). One then has that
f = gh implies

T0f = (T0h)◦−1 ◦ (T0g) ◦ (T0h),

where ◦ denotes the formal composition, and p◦−1 denotes the formal com-
positional inverse. Thus T0f and T0g are conjugate in the group of formally-
invertible series. We call this Condition (T). There is a straightforward algo-
rithm for checking whether or not two formal power series are formally conju-
gate. The algorithm involves reducing them to normal forms [Ka, L, OF2].
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If the multiplier is 1, but f is not “infinitesimally tangent to the identity”
(i.e. T0f 6= X — we find it less of a mouthful to express this condition as
“f − x is not flat at 0”), then Takens [T, Theorem2] identified the conjugacy
class of the Taylor series T0f as the sole conjugacy invariant (— cf. also [AR]
for another proof).

If f − x is flat at 0, Condition (T) just says that g− x is also flat at 0. This
is not enough.

2.4 Example

Proposition 2.1 Let f(x) = x − e−
1
x and g(x) = x − e−

1
x2 . The functions f

and g are not conjugate.

Proof. Suppose h(x) = ax + bx2 + . . . is a conjugation. Then it maps the
interval [x

2 , x] to the interval [ax
2 + o(x), ax + o(x)]. For small positive x, the

first interval has O(x exp(1/x)) iterates of x under f , whereas the second has
O(x exp(1/a2x2)) iterations of h(x), a much greater number. But the conjugacy
condition requires that the two intervals contain equal numbers of iterates of x
and h(x), respectively.

So we need another idea, in order to deal with two general elements f, g ∈ S−.
If you think about it, the main meat of the conjugacy problem on [0,+∞)

involves the functions with f − x flat at 0. There is no hope of tackling the
conjugacy problem for such functions by reducing to explicit normal forms.
Neither is it possible to reduce it to the temptingly straightforward task of
comparing vectorfields whose exponentials are the given functions, for the simple
reason that the exponential map is not surjective. The only way to come at it is
to take two functions and compare them directly with one another, rather than
with some collection of templates. What is needed is a “practical” decision-
procedure for determining conjugacy.

We find such a procedure by using an infinite product, and a differential
equation.

2.5 The Product

For x > 0 and ξ > 0, let

H1(x, ξ) = H1(f, g;x, ξ) =
∞∏

n=0

f ′(f◦n(x))
g′(g◦n(ξ))

. (1)

We say that f and g satisfy Condition (P) if there exist x > 0 and ξ > 0 such
that the product H1(x, ξ) converges.

The product H1(x, ξ) appears already in Sternberg’s paper [S], in the special
case g(x) = λx, and in Kopell’s paper [K] in the case f = g. We have not seen
it used in the literature for general f and g.
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We shall show (Corollary 3.4) that if Condition (P) holds, then H1(x, ξ)
exists for all x > 0 and ξ > 0, and (Lemma 4.1) is infinitely-differentiable and
positive. We may then consider the three-parameter initial-value problem

D1(a, α, λ) :

{
dφ
dx

= H1(x, φ(x))λ, ∀x > 0,
φ(a) = α

(2)

depending on λ > 0, a > 0 and α > 0. We shall show that for each given a > 0
and α > 0, there exists (Lemma 4.10) exactly one λ > 0 for which the (unique)
solution φ = Φ+(a, α) to problem D1(a, α, λ) has f(a) = gφ(a), and (Lemma
4.8) that this φ conjugates f to g in D((0,+∞)), and (Lemma 4.9) extends in
C1([0,+∞)). This means that, subject to Condition (P), there is a 1-parameter
family of C1 conjugations from f to g on [0,+∞)1. This immediately gives us
a result about C∞ conjugacy on [0,+∞):

Theorem 2.2 (Main Theorem) Let f, g ∈ S−. Then f is conjugate to g in
D([0,+∞) if and only if Condition (P) holds and there exists some a > 0 and
α > 0 for which Φ+(a, α) is C∞ at 0.

The value of this result is that it narrows the search for a conjugating map φ to
the 1-parameter family of solutions of an explicit ordinary differential equation.

We repeat (for emphasis) the fact already noted (cf. sections (3.1) and (3.2))
that when f −x is not flat at 0, then Condition (T) implies f is conjugate to g.
The theorem is interesting when f − x is flat at 0.

For a general half-open interval I = [d, c) or I = (c, d], we take J =int(I) and
define S− as the semigroup of diffeomorphisms f ∈ D(I) which iterate all points
of J towards the endpoint d, and S+ as the semigroup of those that iterate all
points of J towards c. In order to adapt the above results about f, g ∈ S− to
the interval J ∪ {d}, one should replace (0,+∞) by J , and 0 by d. Then, for
f, g ∈ S−, the product condition (P) takes precisely the same form (1), and the
differential equation also, except that its domain is the interior J . The theorem
yields, by conjugating I to [0,+∞), a precisely similar result for f, g ∈ S− on
I.

For f, g ∈ S+, one applies the theorem to f◦−1 and g◦−1, which lie in S−.
Unwinding the definitions, we see that Condition (P) for elements of S+ involves
the infinite product

H2(x, ξ) =
∞∏

n=1

g′(g◦−n(ξ))
f ′(f◦−n(x))

, (3)

and the differential equation takes the form:

D2(a, α, µ) :

{
dφ
dx

= H2(x, φ(x))µ,
φ(a) = α.

(4)

1{Φ+(a, α) : a > 0, α > 0} is a 1-parameter family, because

Φ+(a, α) = Φ+(b, Φ+(a, α)(b))

for each b > 0.
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2.6 Compact Intervals

For a compact interval I = [c, d], with nonempty interior J , we define S−(I) as
the semigroup of homeomorphisms that iterate each element of J towards d.

In order that two given f, g ∈ S− be conjugate in D([c, d], it is necessary
that they be conjugate in D([c, d)) and in D((c, d])). Thus the Main Theorem
applies, and tells us that the two-sided product

H(x, ξ) = H1(x, ξ) ·H2(x, ξ)−1 =
∞∏

n=−∞

f ′(f◦n(x))
g′(g◦n(ξ))

must converge for some (or equivalently all) x, ξ ∈ J . This is the appropriate
version of Condition (P), for compact intervals.

Assuming Condition (P), we may form two initial-value problems, corre-
sponding to equations (2) and (4). Given a ∈ J and α ∈ J , there are unique λ
and µ, repectively, such that the solutions Φ+(a, α) and Φ−(a, α), respectively,
to these equations conjugate f to g on J and have C1 extensions to (c, d] and
[c, d), respectively. We may then formulate a solution to the conjugacy problem,
as follows:

Theorem 2.3 Let I be a compact interval and let f, g ∈ D(I), both fixed-point-
free on J , both in S−. Then the following conditions are equivalent:
(1) f is conjugate to g in D(I);
(2) The product H(x, ξ) converges for some (and hence for all) x > 0 and ξ > 0,
and there exists some a > 0 and α > 0 such that the solution Φ+(a, α) extends
C∞ to both ends of I;
(3) There exist a > 0 and α > 0 such that H(a, α) converges, and Φ+(a, α) =
Φ−(a, α) extends in D(I).

2.7 Shape

It is worth noting a necessary condition (the “shape” condition) that is easier
to check in the compact case. This will often suffice to show two maps are not
conjugate.

First we define

Fa(x) = H(f, f ;x, a) =
∞∏

n=−∞

f ′(f◦n(x))
f ′(f◦n(a))

,

and

Gα(ξ) = H(g, g; ξ, α) =
∞∏

n=−∞

g′(g◦n(ξ))
g′(g◦n(α))

whenever x, ξ, a, α ∈ J . Note that

H(x, ξ) ·Gα(ξ) = Fa(x) ·H(a, α), (5)

whenever all the terms make sense.
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Proposition 2.4 Suppose f, g, h ∈ D(I), f is fixed-point-free on J , and f = gh.
Then H(x, h(x)) is constant on J . Thus, given any a, α ∈ J , there is some κ > 0
such that

Fa(x) = κGα(h(x)), ∀x ∈ J.

This is proved in Section 5. This means that the graphs of each Fa and of
each Gα have the same “shape”. If they are not monotone, then the relative
diffeomorphism class of the critical set and the pattern of maxima and minima
must be the same for both functions. The pattern for Fa is determined by
the pattern on the segment Ia = [a, f(a)], because it repeats itself on successive
images of Ia under f . Similarly, the pattern for Gα is determined by the pattern
on [α, g(α)]. Apart from this quasiperiodic feature, the patterns can be pretty
complicated.

2.8 Flowability

We note an application to existence of a smooth flow (see below) on a compact
interval, for which f is the time-1 step.

By a flow on a compact interval I, we mean a continuous homomorphism
t 7→ Φt from the additive topological group (R,+) into D(I), endowed with its
usual topology (the topology of simultaneous convergence of functions and their
inverses, uniformly on I).

We say that f ∈ D(I) is flowable if there exists a flow Φt, with f = Φ1 (i.e.
f is the “time 1” map of the flow (Φt)t∈R.

Proposition 2.5 Suppose that f ∈ D(I), is fixed-point-free on J and f is flow-
able. Then for each a ∈ J , Fa is either strictly monotone on J , or constant on
J .

Proof. Suppose that Fa is neither strictly monotone on J nor constant on J .
Each conjugacy if f to itself must permute the maximal open intervals of strict
monotonicity of Fa. Since Fa is smooth and not strictly monotone or constant,
there exist at least two such intervals, and since the pattern repeats, there are
in fact infinitely many. But the number is countable, since they are pairwise
disjoint open sets, and conjugacy must permute the countable set of endpoints
of these intervals of monotonicity, and is determined uniquely by the image of
one endpoint. Hence the centralizer of f is a countable group, not the image of
a flow.

We can do better when the graph of f is tangent to the diagonal at the ends
of I:

Corollary 2.6 Suppose f ∈ D(I) is fixed-point free on J and is flowable. Then
the following are equivalent:

1. f ′(c) = f ′(d);
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2. f ′(c) = f ′(d) = 1;

3. Fa is constant on J , for each (or any one) a ∈ J .

Proof. The implication (1) ⇒ (2) follows from the fact that 1 is always trapped
between f ′(c) and f ′(d).

Next, note that we have the formula

Fa(f(x)) = Fa(x)
f ′(d)
f ′(c)

, (6)

whenever a, x ∈ J .
Suppose (2) holds. Fix a ∈ J . The formula 6 implies that Fa(f(x)) = Fa(x)

for all x ∈ J . Since f is flowable, Proposition 2.5 tells us that Fa is constant
on each interval [f(x), x]. But for any fixed x0 = x, the iterates xn = f◦n(x)
converge monotonically to one end of J as n ↑ +∞, and monotonically to the
other end as n ↓ −∞, hence the intervals [xn+1, xn] pave J , and, since Fa is
constant on each, it is constant on the whole interval J . Thus (2) ⇒ (3).

Finally, suppose (3) holds. Then equation 6, applied to any x ∈ J , yields
f ′(d) = f ′(c), since Fa(x) never vanishes.

We note that these results depend only on the assumption that f ∈ C2(I).

2.9 Remark

In special cases, the conjugacy problem on a compact interval can be reduced
to condition (T) at both ends, plus identity of a suitable modulus (a conju-
gacy invariant that is a diffeomorphism on some interval). See Robbins [RO],
Afraimovitch Liu and Young [ALY], and Young [Y]. All these results are sub-
sumed in an unpublished lemma of Mather, subsequently and independently
found by Young, which covers the case in which the germs of f at both ends
of the interval are the exponentials of smooth vector fields, and for which the
modulus is a double coset of the rotation group in the group of circle diffeomor-
phisms, and the conjugacy class of f is determined by the smooth conjugacy
classes of the two vectorfield germs and the modulus. We are very grateful to
Professor Mather for making his account of this available to us.

3 Half-open Interval: the Product Condition

Fix arbitrary f, g ∈ S−.

Lemma 3.1 Suppose f and g are conjugate in D([0,∞)). Then for any x and
some corresponding ξ the product (1) converges.
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Proof. Pick h ∈ D([0,∞)) with f = gh, and set ξ = h(x). We observe that
h ◦ f◦n = g◦n ◦ h, hence equating derivatives we get

h′(f◦n(x))
df◦n

dx
(x) =

dg◦n

dξ
(ξ)h′(x),

hence
n−1∏
j=0

f ′(f◦j(x))
g′(g◦j(ξ))

=
h′(x)

h′(f◦n(x))
,

so the product converges to the limit h′(x)/h′(0).

The correspondence between x and ξ, referred to in the lemma is not essen-
tial, for we have the following, which is due to Kopell [K]. (We give the proof
for convenience.)

Lemma 3.2 Let x, y ∈ [0,∞) and denote xn = f◦n(x), yn = f◦n(y). Then the
infinite product

∞∏
n=0

f ′(xn)
f ′(yn)

(7)

converges.

Proof. By removing a finite number of terms from the product, we may assume
that y0 is between x1 and x0. The convergence of the product is equivalent to the

convergence of the series of logarithms
∞∑

n=0
ln( f ′(xn)

f ′(yn) ), which in turn is equivalent

to that of
∞∑

n=0

(
1− f ′(xn)

f ′(yn)

)
. Now

∣∣∣∣f ′(xn)− f ′(yn)
f ′(yn)

∣∣∣∣ ≤ ( sup |f ′′|
inf |f ′|

)
· |xn − yn|

(where the sup and inf are taken on [0, x]; note that the inf is positive since f is a

diffeomorphism), and so the convergence follows from
∞∑

n=0
|xn−yn| ≤ |x0|, which

holds because the intervals from xn to yn are pairwise-disjoint subintervals of
that from 0 to x0.

Corollary 3.3 (1) In case x1 < y < x0, and T0f = X + bXp+1 + . . . for some
p ∈ N, the product (7) is 1+O(xp) as x ↓ 0, uniformly for y between x1 and x0.
(2) In case T0f = X the product is 1 + o(xn), for any n.

Proof. (1) Just use the estimate f ′′(x) = O(xp−1).
(2) follows.

Corollary 3.4 If the product (1) converges for some x, ξ > 0, then it converges
for any choice of x, ξ > 0.
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Corollary 3.5 Suppose f and g are conjugate in D([0,∞)). Then for any x > 0
and ξ > 0 the product (1) converges.

Corollary 3.6 The convergence or divergence of the product (1) is not affected
if the functions f and g are replaced by conjugates.

It follows from the results of Sternberg [S] and Takens [T], mentioned already,
that Condition (P) is actually a consequence of Condition (T) in the non-flat
cases:

Proposition 3.7 (1) If f ′(0) 6= 1 or g′(0) 6= 1, then Condition (P) is equivalent
to f ′(0) = g′(0).
(2) If f and g have conjugate non-identity Taylor series, then Condition (P) is
satisfied.

Part (1) in fact is easy to prove, once observed. As for Part (2), by replacing g
with a conjugate which has the same Taylor series as f we reduce to the case in
which f and g have coincident Taylor series. The result then follows from the
next, more general lemma, which we will use later.

Lemma 3.8 Let T0(f) = T0(g) = X + bXp+1 + · · · (mod X2p+1), where p ∈ N
and b 6= 0. Then

∞∏
n=0

f ′(f◦n(x))
g′(g◦n(x))

= 1 +O(xp).

Proof. Without loss in generality, we take b < 0, and write c = −b. We use C
for a positive constant that may differ at each occurrence. We may assume that
the x > 0 under consideration are so small, that |f(x) − x + cxp+1| ≤ Cxp+2

and |Cx| < 1
2c. This means that cxp+1

n −Cxp+2
n < xn−xn+1 < cxp+1

n +Cxp+2
n .

So, for 0 < α < 1 between x and αx there are no more than

(1− α)x
(c(αx)p+1 − Cxp+2)

=
(1− α)α−(p+1)

cxp(1− α−(p+1)Cx)

and no fewer than
(1− α)x

(cxp+1 + Cxp+2)
=

1− α

cxp(1 + Cx)
points from the f -orbit of x.

Let us start by reformulating the claim: It is enough to prove that

log

( ∞∏
n=0

f ′(f◦n(x))
g′(g◦n(x))

)
=

∞∑
n=0

log
(
f ′(f◦n(x))
g′(g◦n(x))

)
= O(xp).

As f ′(0) = g′(0) = 1 and | log(t)| ∼ |1− t| close to t = 1, it is enough to prove
that

∞∑
n=0

|g′(g◦n(x))− f ′(f◦n(x))| = O(xp).
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Since T0f = T0g, we may also assume x is so small that |f ′(x)− g′(x)| < Cx2p.
We then observe that, since |xn − xn+1| > (c/2)xp+1

n , we have the estimate

∞∑
k=0

xp+1
k ≤ 2

c

∞∑
k=0

|xk − xk+1| =
2x0

c
. (8)

As |f ′(x)− g′(x)| < Cx2p for all x in question, we have

∞∑
k=0

|f ′(xk)− g′(xk)| ≤ C

∞∑
k=0

x2p
k ≤ Cxp−1

0

∞∑
k=0

xp+1
k = O(xp

0),

and the estimate can be reduced to estimating
∑
|g′(xn) − g′(g◦n(x))|. Since

g′′ = O(xp−1) we have |g′(r)− g′(s)| ≤ O(sp−1)|r− s| for r < s, and it remains
to show that

∑
|f◦n(x)− g◦n(x)| < Cx.

Let us now consider only points so close to the origin that |f(x) − g(x)| <
Cx2p+1. For those points we have the estimate

|f◦n(x)− g◦n(x)| ≤ |f◦n(x)− f(g◦(n−1)(x))|+ |f(g◦(n−1))(x)− g◦n(x)|
≤ Mx|f◦(n−1)(x)− g◦(n−1)(x)|+ (g◦(n−1)(x))2p+1

≤ (Mn
x + · · ·+ 1)x2p+1,

where Mx is the maximum of f ′ on the interval [0, x], and thus can (for small x)
be estimated from above by 1 (since b < 0). This gives us |f◦n(x) − g◦n(x)| ≤
nx2p+1.

Let us consider the first point in the orbit of x with respect to f which is
less than αx. Let it be f◦n1(x). Then by the observation at the beginning of
the proof, for α > 1

2 , n1 < (1 − α)C/xp, where the constant depends only on
the Taylor expansion. By the previous paragraph, for any k ≤ n1

|f◦k(x)− g◦k(x)| ≤ (1− α)Cx2p+1

xp
= (1− α)Cxp+1.

As |f(y)− y| > c
2y

p+1, we see that for a choice of α < 1 close enough to 1,
1
2 (f◦(k+1)(x) + f◦k(x)) < g◦k(x) < 1

2 (f◦k(x) + f◦(k−1)(x)). Thus the intervals

[f◦k(x), g◦k(x)] are disjoint, and
n1∑

k=0

|f◦k(x)− g◦k(x)| ≤ (1− α)x+Cxp+1. On

the other hand, in the particular case, k = n1, if g◦(n1+1)(x) = x(1), we have
∞∑

m=0
|f◦(n1+1+m)(x)−f◦m(x(1))| ≤ αx, as the sum of lengths of disjoint intervals.

This means that

∞∑
n=0

|f◦n(x)− g◦n(x)|

≤
n1∑

n=0

|f◦n(x)− g◦n(x)|+
∞∑

m=0

|f◦m(x(1))− g◦m(x(1))|+

11



∞∑
m=0

|f◦(n1+1+m)(x)− f◦m(x(1))|+ Cxp+1

≤ (1− α)x+
∞∑

m=0

|f◦m(x(1))− g◦m(x(1))|+ αx+ Cxp+1 ≤

2x+
∞∑

m=0

|f◦m(x(1))− g◦m(x(1))|.

Using this argument inductively we deduce that

∞∑
n=0

|f◦n(x)− g◦n(x)| ≤ 2x+ 2x(1) + . . . ≤ 2
∞∑

j=0

αjx = Cx,

and we are done.

Remark. Notice, that for the particular case p = 1 this lemma says that the
Condition (P) is satisfied for f(x) = x + x2 and g(x) = x + x2 + x3. On the
other hand, the Taylor series X + X2 and X + X2 + X3 are not conjugate,
which shows that the Condition (P) is strictly weaker than Condition (T) in the
non-flat case .

We shall see shortly that condition (P) guarantees the existence of a C1

diffeomorphism conjugating f to g. Thus the existence of a C1 conjugacy is
strictly weaker than the existence of a C∞ conjugacy.

We mention here the observations of Young [Y]. He considered C2 diffeomor-
phisms f on [0,+∞) with T0f = x+ ax2 (modx3), and with a 6= 0. A result of
Szekeres (cf. [KCG, Theorem 8.4.5]) implies that all such C2 diffeomorphisms
(having a of one sign) are C1-conjugate. Young showed that they are in fact
C2-conjugate.

4 Half-open Interval: Sufficient Conditions

4.1 The Differential Equation

Suppose f, g ∈ D([0,+∞)) fix only 0, both belong to S− and satisfy condition
(P).

We define

F1a(x) = H1(f, f ;x, a) =
∞∏

n=0

f ′(f◦n(x))
f ′(f◦n(a))

whenever a, x > 0. Note that

F1a(x) = lim
n↑∞

(f◦n)′(x)
(f◦n)′(a)

.
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We define

G1α(ξ) = H1(g, g; ξ, α) =
∞∏

n=0

g′(g◦n(ξ))
g′(g◦n(α))

whenever α, ξ > 0.

Lemma 4.1 Fix a > 0, α > 0. The functions x 7→ F1a(x) and ξ 7→ G1α(ξ) are
infinitely-differentiable and positive on (0 +∞), and hence

(x, ξ) 7→ H1(x, y) = H1(a, α)F1a(x)/G1α(ξ)

is infinitely-differentiable and positive on (0,+∞)× (0,+∞).

Proof.
It suffices to show that x 7→ F1a(x) is infinitely-differentiable on (0,+∞) for

each a > 0. The argument for ξ 7→ G1α(ξ) is precisely analogous.
Fix a ∈ (0,+∞). Let Ja denote the closed interval from 0 to a. Let an =

f◦n(a), for all n ∈ Z. Let Ia denote the closed interval from a1 to a. Let

Dj = max
Ja

|f (j)|,∀j ∈ Z.

(Note that min
Ja

|f ′| = (D−1)−1.)

For x ∈ (0,+∞), let xn = f◦n(x), for all n ∈ Z. For ease of notation,
we abbreviate d

dxf
◦n(x) = f ′(x)f ′(x1) . . . f ′(xn−1) to x′n, and similarly denote

dk

dxk f
◦n(x) by x(k)

n . We use x′′n for x(2), etc.
Before continuing the proof, we pause to note a couple of lemmas that follow

from Lemma 3.2.
In what follows, unless otherwise specified, we use K to denote a constant

that depends at most on f , and a, and that may be different at each occurence.

Lemma 4.2
K−1|(f◦n)′(a)| ≤ |x′n| ≤ K|(f◦n)′(a)|

whenever x ∈ Ia.

Proof.
(f◦n)′(a)
(f◦n)′(x)

=
n−1∏
j=0

f ′(aj)
f ′(xj)

,

so the result follows from the uniform convergence of
∞∏

j=0

f ′(aj)
f ′(xj)

, for x ∈ Ia.

Lemma 4.3
|x′n| ≤ K

∣∣∣xn+1 − xn

x1 − x0

∣∣∣
whenever x ∈ Ia.
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Proof. By the Law of the Mean,

xn+1 − xn

x1 − x0
= (f◦n)′(y)

for some y between x and x1, so the result follows from a few applications of
the previous lemma.

Lemma 4.4 |x1 − x| ≥ K|a1 − a|, for all x ∈ Ia.

Proof. For x ∈ Ia, f(a) ≤ x ≤ a, so f(x) ≤ f(a) ≤ x, so |f(x) − x| =
|f(x)−f(a)|+ |x−f(a)| ≥ (D−1)−1|x−a|+ |x−a1| ≥ min{1, (D−1)−1}|a−a1|.

Proof of Lemma 4.1. It suffices to show that the logarithm

logF1a(x, ξ) =
+∞∑
n=0

{log f ′(xn)− log f ′(an)}

is infinitely-differentiable.
The term by term derivative with respect to x is the series

+∞∑
n=0

f ′′(xn)x′n
f ′(xn)

,

and it will be convenient to denote the n-th term by

Tn(x) =
f ′′(xn)x′n
f ′(xn)

,

and the n-th partial sum by

Sn(x) =
n−1∑
j=0

Tj(x).

It will suffice to show that for each nonnegative integer k, S(k)
n (x) converges

uniformly on Ia.
For any smooth function ρ : (0,+∞) → (0,+∞), and k ∈ N, let us define

Ak(ρ) as the function

Ak(ρ) =
dk

dxk

(
f ′′(ρ)ρ′

f ′(rho)

)
− f ′′(ρ)ρk+1

f ′(ρ)
.

Then a straightforward induction establishes that Ak(ρ)(x) is the sum of Mk

terms (where the integer Mk depends on k, but not on ρ), each of which is a
finite product

γ
∏
i

f (rj)(ρ(x))
∏
j

ρ(tj)(x)

(f ′(ρ(x)))k,
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where the coefficients γ are fixed integers independent of f , where each ri ≤ k+2,
each tj ≤ k, and at least one tj is present.

The term T
(k)
n takes the form

Ak(xn) +
f ′′(xn)x(k+1)

n

f ′(xn)
.

To begin with, we observe that by the last two lemmas∣∣∣∣f ′′(xn)x′n
f ′(xn)

∣∣∣∣ ≤ KD2D−1|xn+1 − xn|, ∀x ∈ Ia

hence {Sn(x)} itself converges uniformly on Ia, with the error in Sn(x) bounded
by KD2D−1an, where an = f◦n(a).

Now we will proceed by induction on k, and we first consider the first deriva-
tives T ′n(x) and note that

T ′n(x) = A1(xn) +B1(xn),

where

A1(xn) =
{
f ′′′(xn)(x′n)2

f ′(xn)
− (f ′′(xn)x′n)2

(f ′(xn))2

}
and

B1(xn) =
n−1∑
j=0

f ′′(xn)x′′n
f ′(xn)

.

Estimating each of its terms by its maximum, we see that A1(xn) is domi-
nated by

K2(D3D−1 +D2
2D

2
−1)|xn+1 − xn| ≤ K|xn+1 − xn|,

for a (different) constant K.
A calculation yields x′′n = x′nSn, so the term B1(xn) is dominated by

K2D2D−1|xn+1 − xn|,

and we conclude that S′n(x) also converges uniformly on Ia, with error bounded
by Kxn.

We also observe that |S′n(x)| ≤ Kx.
Now we formulate an induction hypothesis Pk:
There exist a constant K, depending only on f , a, and k, such that
(a) for 0 ≤ j ≤ k − 1, and each n ≥ 0,

|T (j)
n (x)| ≤ K|xn+1 − xn|, and |S(j)

n (x)| ≤ K, and

(b) for 1 ≤ j ≤ k,
|x(j)

n | ≤ K|xn+1 − xn|.
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We have established P2.
Suppose Pk holds, for some k ≥ 2. Differentiating the formula x′′n = x′nSn

k − 1 times we get

x(k+1)
n =

k−1∑
j=0

(
k − 1
j

)
x(j+1)

n S(k−j−1)
n

so conditions (a) and (b) of the hypothesis yield

|x(k+1)
n | ≤

k−1∑
j=0

(
k − 1
j

)
K|xn+1 − xn| = K|xn+1 − xn|

(with a new K), and condition (b) of Pk+1 is proven.
Condition (a) then follows because of the form of T (k)

n .
Thus, by induction, Pk holds for each k ≥ 2.
Thus S(k)

n =
∑
T

(k)
m converges uniformly for all k, and Lemma 4.1 is proved.

We now consider the three-parameter initial-value problem: D1(a, α, λ) (cf.
equation (2)).

It follows from Lemma 4.1 and standard results about ordinary differen-
tial equations [BDP, p.22] that problem D1(a, α, λ) has a unique infinitely-
differentiable solution φ(a, α, λ;x) near x = a whenever (P) holds, a, α > 0,
and λ > 0. Obviously, the solution is a strictly-increasing function of x and its
domain is an open subinterval of (0,+∞), containing a.

Note that
m∏

j=n

f ′(xj) = (f◦(m−n))′(xn) ≈ xm+1 − xm

xn+1 − xn
,

so the product tends to 0 as m→ +∞. It follows that the product H1(x, y) does
not extend continuously to the closed quadrant [0,+∞)× [0,+∞), nor even to
the corner (0, 0), so there is no point in considering the differential equations at
the endpoint. In fact, a moment’s thought reveals that H1(x, y) tends to ∞ as
x → 0 for fixed y > 0, and tends to 0 as y → 0 for fixed x > 0, so all positive
numbers may be obtained as limits of H1(x, y) for suitable approach to (0, 0)
from inside J × J .

The following lemma reformulates the information in the proof of Lemma
3.1 in the new notation:

Lemma 4.5 Suppose f, g, h ∈ D([0,+∞)) and f = gh. Then φ = h is the
solution to problem D1(a, h(a), h′(0)), whenever a > 0.

To characterise the existence of a conjugating h, we need to formulate the
conditions of this lemma in a way that does not refer explicitly to h.

16



Not all solutions to the initial-value problems D1(a, α, λ) will be conjugating
maps. For a start, we would need to ensure the condition φ(f(a)) = g(α).

This leads us to consider the following:

Lemma 4.6 Assume condition (P), with f, g ∈ S−. Then for each a > 0, and
each α > 0, there exists λ > 0 such that the solution to problem D1(a, α, λ) has
φ(f(a)) = g(α).

Proof. Given a and α, we could start by trying λ = 1. If the solution φ1 to
D1(a, α, 1) has φ1(f(a)) = g(α), we take λ = 1 and are done. If φ1(f(a)) > g(α),
then decreasing λ eventually reduces φ′ to very small values on the interval
[a, f(a)], and hence pulls φ(f(a)) above g(α). Thus, since φ(f(a)) varies con-
tinuously with λ, there exists some λ with φ(a, α, λ)(f(a)) = g(α), and we are
done. If φ(f(a)) < g(α), then we can attain a similar result by increasing λ
instead, because this increases φ′ to very large values.

Now we proceed to show that the solution φ of Lemma (4.6) is actually
defined on the whole interval (0,+∞) and conjugates f to g. We need another
lemma first:

Lemma 4.7 Suppose that u is a differentiable real-valued function on an open
interval U , and for some constant κ > 0 we have

|u′(x)| ≤ κ · |u(x)|, ∀x ∈ U.

Suppose that u has a zero in U . Then u is identically zero on U .

Proof. The set Z = u◦−1(0) of zeros of u in U is relatively-closed, and
nonempty, so it suffices to show that it is open. Fix a ∈ Z, and choose ε > 0 so
that a± ε ∈ U and εκ < 1. Let M be the maximum of |u| on the closed interval
J = [a− ε, a+ ε].

If M > 0, then choose b ∈ J with |u(b)| = M . By the Law of the Mean, we
may choose c between a and b with |u(b)| = |u′(c)| · |b− a|. But then

M = |u(b)| ≤ κM · ε < M,

which is impossible.
Thus M = 0, so a is an interior point of Z.
Thus Z is open, and we are done.

Lemma 4.8 Suppose (P). Fix a, α > 0. Choose λ > 0 such that the solution
h(x) = φ(a, α, λ;x) to problem D1(a, α, λ) has h(f(a)) = g(α). Then the domain
of the solution is J = (0,+∞), h maps J onto J and g ◦ h = h ◦ f on J .

Proof. We establish that on each compact subinterval of J we have an inequal-
ity |u′| ≤ κ · |u|, where

u(x) = g(φ(x))− φ(f(x)).
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In detail, one calculates (by fiddling with products) that

u′(x) = λ{H1(x, φ(x)) · g′(φ(x))−H1(x, g−1(φ(f(x)))) · g′(g−1(φ(f(x))))},

and (using the Law of the Mean) estimates this (on a compact subinterval of J)
by

κ1 × |g−1(φ(f(x)))− φ(x)|

≤ κ2|φ(f(x))− g(φ(x))| = κ2|u(x)|.

Then we apply Lemma 4.7 and the fact that u(a) = g(α)−φ(f(a)) = 0. This
tells us that u(x) = 0 on the domain of φ, which is the largest open interval U
with a ∈ U on which φ(x) ∈ J . But if either end (say c) of U lies inside J , then
by continuity φ is the solution to D1(c, φ(c), λ), and g(φ(c)) = φ(f(c)) ∈ J ,
so φ extends to a neighbourhood of c, a contradiction. Thus U = J , and φ
conjugates f to g on the whole of J .

These results tell us that the initial-value problem together with the conju-
gation equation at one point are enough to guarantee the conjugation equation
on the whole interval J = (0,+∞).

Lemma 4.9 Suppose condition (P) holds. If φ : [0,+∞) → [0,+∞) satisfies

φ(f(x)) = g(φ(x)),
φ′(x) = H1(x, φ(x))λ

}
∀x ∈ J,

then limx→d φ
′(x) = λ and φ has a one-sided derivative at d, equal to λ.

Proof. Fix some a ∈ J and denote Ia = [f(a), a].
For fixed x ∈ Ia, letting xn = f◦n(x), we have

φ(f◦n(x)) = g◦n(φ(x)),
φ′(xn) · x′n = g◦n′(φ(x)) · φ′(x),

φ′(xn) =
∏n−1

j=0

(
g′(g◦j(φ(x))
f ′(xj)

)
· φ′(x),

and this converges, uniformly on Ia, to λ. Since the product converges to
H1(x, φ(x))−1, the right-hand side converges to λ, so the derivative φ′ extends
continuously from J to 0 if φ is given the value 0 there. This is enough to force
the rest of the conclusions.

Finally, we show that the λ is unique:

Lemma 4.10 Suppose conditions (P) holds. Then, for each given a, α ∈ J ,
there is exactly one λ > 0 for which the solution φ = h to problem D1(a, α, λ)
has h(f(a)) = g(α).
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Proof. Suppose this fails, and there are λ1 < λ2 such that the solutions φi to
problems D1(a, α, λi) (i = 1, 2) both have φi(f(a)) = g(φi(a)).

Then by Lemma 4.8 both solutions have φi(f(x)) = g(φi(x)) on J , both
map J onto J , and both derivatives extend continuously to 0.

Since, initially, φ1(a) = φ2(a) and φ′1(a) < φ′2(a), we have φ1(x) > φ2(x) for
some distance to the left of a. Since φ1(0) = φ2(0)(= 0), there exists a first point
e < a at which φ1(e) = φ2(e). Just to the right of e, we have φ1(x) > φ2(x),
and hence φ′1(e) ≥ φ′2(e). But this contradicts the differential equation, because
(since φ1(e) = φ2(e)) we have

φ′1(e) = λ1H(e, φ1(e)) < λ2H(e, φ2(e)) = φ′2(e).

This contradiction establishes the result.

Corollary 4.11 Suppose Conditions (P) holds. Then there is precisely a one-
parameter family of C1 conjugations from f to g on [0,+∞).

Proof. In fact, if we fix a, there is precisely one conjugation φ = Φ+(a, α) for
each α ∈ (0,+∞).

Thus there is at most a one-parameter family of C∞ conjugations from f to
g.

At this stage, we have completed the proof of the Main Theorem 2.2.

4.2 Remarks about φ′(0)

Assume Conditions (P) holds. If 0 is a hyperbolic point for f , then the family of
conjugating maps is parametrised by the multiplier at 0. If f ′(0) = 1, but f −x
is not flat at 0, then it follows from Lemma 3.8 that all the conjugating maps
have the same derivative at 0. This is seen by noting that the lemma, applied
to the case f = g, shows that the C1 centraliser of f consists of maps that have
derivative 1 at 0, and for general g the family of conjugating maps from f to g
is a coset of this centraliser.

Lemma 3.8 does not tell us anything about what happens when f −x is flat
at 0, but it is possible to see that again the conjugating C1 maps all have the
same derivative at 0. The essential point is the following, which can be proved
more simply now than Lemma 3.8:

Proposition 4.12 Suppose f ∈ S−, f ′(0) = 1, and φ is a C1 diffeomorphism
of [0,+∞), commuting with f . Then φ′(0) = 1.

Proof. Fix a > 0, and let α = φ(a). Then φ is Φ+(a, α). Let ak = f◦k(a)
whenever k ∈ Z. There is a unique k such that

ak+1 ≤ α < ak.

So at a, φ lies between f◦k and f◦(k+1).
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If φ(a) = f◦k(a), then by Lemma 4.10, φ coincides with f◦k on J , and hence
has derivative 1 at 0, and we are done.

Otherwise, 4.10 tells us that φ never has the same value as f◦k or f◦(k+1) at
any point, so its graph lies sandwiched between their graphs.

Thus
f◦k(x)− x > φ(x)− x > f◦(k+1)(x)− x

for all x > 0, and hence, dividing by x and taking limits we get φ′(0) = 1.

If we assume that the conjugating map is C∞ to 0, then Corollary 3.3 pro-
vides a much easier way to a stronger conclusion:

Proposition 4.13 (Kopell) If φ ∈ D([0,+∞)) commutes with f , and f is flat
at 0, then so is φ.

Proof. From the Corollary, φ(x)−x tends to zero more rapidly than any power
of x, and hence given that φ(x)− x is smooth, all its derivatives vanish at 0.

4.3 Remark about Centralisers

The special case f = g of the foregoing corresponds to results of Kopell [K, pp.
167-71] about centralisers. Indeed, Kopell made use of the f = g version of
the differential equation of problem D1 in order to obtain her results. See also
[KCG, Section 8.6, pp. 353-5]. (We have not seen the differential equation for
general f and g used in the literature.)

The elements of the centraliser Cf of f in D([0,+∞)) (where f fixes only
0) are exactly the elements that conjugate f to f , so applying the foregoing
to the case g = f , we have Kopell’s result that the centraliser is at most a
one-parameter group. The centraliser is never trivial, since it has all iterates
f◦n (n ∈ Z) as elements. However, it may fail to be connected. Sergeraert [SE,
p.262-5] gave an example in which f has no smooth compositional square root,
and hence its centraliser is discrete.

Sergeraert also gave a useful sufficient condition for the centraliser of an
element f ∈ S− to be connected. His condition is the existence of constants
κ > 0 and δ > 0 such that

sup
0≤y≤x

(y − f(y)) ≤ κ(x− f(x)),

whenever 0 < x < δ. In particular, it always works if x− f(x) is monotone.
The homomorphism h 7→ h′(0) maps the centraliser of a given f to a multi-

plicative subgroup of (0,+∞), but (as we’ve seen) the subgroup in question is
just {1}, as soon as f ′(0) = 1.

In a rather similar way, the homomorphism Π : h 7→ T0h maps Cf onto a
subgroup of the group of invertible formal power series, and the image must
have T0f as an element.

We have seen in Proposition 4.13 that if f − x is flat at 0, then all elements
of its centraliser have the same property, so Π is trivial.
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Generally, the image of Cf under Π is a subgroup of the centraliser of T0f in
the power series group. In case T0f = X modXp+1 but T0f 6= X modXp+2, it
is a purely algebraic fact (cf. [K, p.170], [L] or [KCG, p. 355ff]) that the latter
centraliser is a one-parameter group, and indeed the map to the coefficient of
Xp+1 is an isomorphism to (R,+).

It is interesting to note in passing that the differential equation provides a
way to construct smooth compositional k-th roots of a diffeomorphism f ∈ S−
of [0,+∞) that has a connected centraliser: One takes f = g, fixes a > 0, and
considers the initial-value problem D1(a, α,Λ+(a, α)) for α between a and f(a).
The solution φα that has φ◦k(a) = f(a) is the desired root. Since φ◦k(a) moves
continuously and monotonically away from a as α moves towards f(a) from a,
and passes f(a) before α reaches f(a), there must exist a unique α with the
above property.

4.4 Sufficiency of (P) and (T): Counterexample

The conditions (P) and (T) together are not sufficient for C∞ conjugacy, and
the following example will demonstrate this.

We have noted that in the non-flat case the existence of a C1-conjugacy is
strictly weaker than the existence of a C∞ conjugacy. The example will also
show that it is also weaker in the flat case.

Consider the diffeomorphisms of [0,+∞) defined on the interior by

f(x) = x+ e−1/x2
,

φ(x) = x+ x3/2,
g = fφ.

One finds that f and g are smooth, but φ is only C1: In fact, letting ψ = φ◦−1,
we calculate

ψ′(φ)φ′ = 1,

ψ′(φ)φ′′ + ψ′′(φ)(φ′)2 = 0. (9)

Thus
g′ = ψ′(f ◦ φ)f ′(φ)φ′,

g′′ = ψ′(f ◦ φ)f ′(φ)φ′′ + ψ′(f ◦ φ)f ′′(φ)(φ′)2 + ψ′′(f ◦ φ){f ′(φ)φ′}2.

The second term in the expression for g′′ is continuous, and the other two
add to

f ′(φ){ψ′(f ◦ φ)φ′′ + ψ′′(f ◦ φ)f ′(φ)(φ′)2}. (10)

The only problem is to see continuity at 0, and the point is that for small positive
x we have φ′(x) ≈ 1, ψ′(x) ≈ 1,

φ(k)(x) = O(x
3
2−k),∀k ≥ 2
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and for some sequence of integers pk,

ψ(k)(x) = O(x−pk),∀k ≥ 2

(as is verified inductively). Thus, since f(x) − x is flat at 0, f ′(φ(x)) may be
replaced by 1 and f ◦φ by φ, in the expression (10), with an error that is O(xN )
for all N ∈ N. But when this is done we just get 0, by (9), so g′′ → 0 as x→ 0.

It now becomes clear that when we continue to differentiate g, and express
g(k) in terms of ψ, f , and φ, we get an expression involving derivatives of ψ (at
f ◦ φ), f (at φ), and φ, and that when f is replaced by 11 in this expression we
get zero (the k-th derivative of ψ ◦φ). Moreover, for small x, the error involved
in replacing f(φ) by φ, f ′(φ) by 1, f ′′(φ) by 0, and all higher derivatives f (k)(φ)
by 0, is O(xN ) for all N . Thus g(k) → 0 as x → 0 for all k ≥ 3, as well. It
follows that g is C∞, and g(x)− x is flat at 0, as required.

Now any other C1 conjugation of f and g will differ from φ by composition
with an element of the centralizer of f . Since f(x)− x is monotone, it satisfies
Sergeraert’s condition [S, p.259, Th.3.1], and hence the centralizer of f consists
of C∞ diffeomorphisms, and hence no conjugation of f to g is better than C1.

This shows that Conditions (P) and (T) are not sufficient, by themselves, to
guarantee conjugacy, in general.

Question. Since not all C1 conjugacies between a given f and g belonging to
D([0,∞)) are C∞ to zero, it would be interesting to know whether or not the
set of parameters α for which the solution Φ+(a, α) is C∞ to zero is always a
relatively closed subset of (0,∞). We were not able to resolve this question.

5 Compact Intervals

5.1 The Shape Condition

Now we consider conjugacy for orientation-preserving diffeomorphisms of a com-
pact interval I = [d, c], which are fixed-point-free on the interior J .

Applying the results about half-open intervals to both [d, c) and (c, d], we
get:

Lemma 5.1 Suppose I is compact, f ∈ S−, and f = gh in D(I). Then
H1(x, h(x)) converges to h′(x)/h′(d) for each x ∈ J , and H2(x, h(x)) converges
to h′(x)/h′(c) for each x ∈ J .

Thus:

Corollary 5.2 If f = gh, then the two-sided product

H(x, h(x)) =
∞∏

n=−∞

f ′(f◦n(x))
g′(g◦n(h(x)))

is independent of x ∈ J , and equals the ratio h′(c)/h′(d) of the derivatives of
the conjugating map at the ends.
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This immediately yields the first part of Proposition 2.4, that H(x, h(x)) is
constant. The second part then follows from equation (5).

5.2 Remark

We close by noting the following characterisation of flowability, which is now
clear.

Proposition 5.3 For compact intervals I = [d, c], a diffeomorphism f ∈ D(I)
that is fixed-point-free on (c, d) embeds in a flow if and only if the centralisers of
f in D({c}∪J) and D(J∪{d}) are both connected, and coincide (when restricted
to J).
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