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ABSTRACT

In [4], we proved that a function f : X → R mapping a closed subset X of a

Ck manifold M to R possesses a Ck extension to M if and only if the projection map

π : M ×R → M induces a bijection from the k–th order tangent star Tank(M ×R,

graph(f)) to Tank(M,X). Here it is shown that if k = 1 and the induced map is a

bijection, then the extension can be explicitly constructed.

1. Introduction

In [4], we defined the k–th order tangent star, denoted TankX, of an arbitrary

closed set X contained in a Ck manifold, M . We proved that a function f : X → R

mapping a closed subset X of a Ck manifold M to R possesses a Ck extension to M if

and only if the projection map π : M ×R→M induces a bijection from Tank(M ×R,

graph(f)) to Tank(M,X). Here it is shown that if k = 1 and the induced map is a

bijection, then the extension can be explicitly constructed. In section 2, we recall the

definitions introduced in [4], and provide some other prerequisites for the constructive

proof, which is given in section 3.

2. Notation and definitions

First, we recall some of the definitions made in [4]: more details and some examples

are provided in that paper.

Let Ck(M) denote the Frechet algebra of all Ck real–valued functions on M , and

let Ck(M)∗ denote its dual, which has a natural norm. To each closed X ⊂ M , we

associate the ideal

Ik(X) = {f ∈ Ck(M) : f |X = 0}
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of functions that vanish on X, and we abbreviate

Ik(a) = Ik({a}).

We define
Tank(M,a) = Ck(M)∗ ∩

(
Ik(a)k+1

)⊥
,

Tank(M,X, a) = Tank(M,a) ∩ Ik(X)⊥,

Tank(M) =
⋃

a∈M

Tank(M,a),

Tank(M,X) =
⋃

a∈M

Tank(M,X, a).

In a natural way, we may identify Tank(M) with a subset of Tank+1(M), and get

Tan0(M) ⊂ Tan1(M) ⊂ Tan2(M) · · · .

This allows us to define the order of an element ∂ of Tank(M) as the least i such that

∂ ∈ Tani(M).

The module action of Ck(M) on Ck(M)∗ restricts to a module action on each

Tank(M,X, a), and, given local coordinates, determines a unique module action of a

local algebra

R[x]k,a = R[x1, . . . , xd]/〈(x− a)i : |i| ≤ k + 1〉.

Thus Tank(M,X, a) is a finite–dimensional real vector space and is a module over a

finite–dimensional real algebra.

Tan1(M,X, a) is the direct sum of Rδa (δa = evaluation at the point a) and the

usual tangent space TaM to M at a (thought of as a set of point derivations). If X is a

submanifold near a, then Tan1(M,X, a) is Rδa⊕TaX, and Tank(M,X, a) is essentially

the k–th order tangent space of Pohl [5].

If f : (M,X, a) → (N,Y, b) is a map of pointed pairs, then it induces a map

f∗ : Tank(M,X, a)→ Tank(N,Y, b), and this association is functorial and the induced

map does not increase order and is a module homomorphism.

The main theorem proved in [4] is as follows:

Theorem. Let M be a Ck manifold, X be a closed subset of M , and f : X → R be

continuous. Let G denote the graph of f . Let π : M ×R → M be the projection and

denote the point (a, f(a)) by ã. Then f has a Ck extension to M if and only if the map

π∗ : Tank(M ×R, G, ã)→ Tank(M,X, a)
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is bijective for each a ∈ X.

In section 3 below, we show that if k = 1 and π∗ is bijective, then the C1 extension

to M , whose existence is guaranteed by this theorem, may be explicitly constructed.

For a ∈ Rd, we define the k–th order Taylor map

→a : TankRd → Tank(Rd, a)

as the map, linear on rays, such that

(∂→a − ∂)p(x) = 0

whenever p(x) ∈ R[x] has degree at most k. Putting it another way, if we define the map
b←a to be the map (a linear isomorphism) that makes the following diagram commute:

R[x]k
↙ ↘

R[x]k,b
b←a←− R[x]k,a

then the Taylor map from Tank(Rd, b) to Tank(Rd, a) is the adjoint of b←a. Explicitly,

δ→a
b = δa + (b1 − a1)

∂

∂x1

∣∣∣∣
a

+ · · ·+ (bd − ad)
∂

∂xd

∣∣∣∣
a

+ 1
2 (b1 − a1)2

∂2

∂x2
1

∣∣∣∣
a

+ · · ·

· · ·+ (bd − ad)k ∂k

∂xk
d

∣∣∣∣
a

,

∂

∂x1

∣∣∣∣→a

b

=
∂

∂x1

∣∣∣∣
a

+ (b1 − a1)
∂2

∂x2
1

∣∣∣∣
a

+ · · ·

· · ·+ (bd − ad)
∂k

∂x1∂xk−1
d

∣∣∣∣∣
a

· · ·
∂k

∂xk
1

∣∣∣∣
b

→a =
∂k

∂xk
1

∣∣∣∣
a

,

· · · .

Note that this map depends on k.

One should think of ∂→a as the nearest tangent at a to the tangent ∂, in a certain

sense (— but not in the sense of the metric of Ck∗). Observe that for ∂ ∈ Tank(Rd, b),
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the weak–star limit as a → b of the Taylor–mapped tangents ∂→a is ∂, and if ∂ has

order j < k, then for each function f ∈ Ck, the error will be o(|a− b|k−j).

It is obvious that in general

∂→b→a = ∂→a.

3. Constructing the extension

Let M be a Ck manifold, X be a closed subset of M , and f : X → R be continuous.

Let G denote the graph of f . Let π : M ×R → M be the projection and for x ∈ X

denote the point (x, f(x) by x̃. In this section we show that if the map

π∗ : Tank(M ×R, G, ã)→ Tank(M,X, a)

is bijective for each a ∈ X, then we can construct a Ck extension of f to M .

It is shown in Section 4 of [4] that we need only consider the case M = Rd. We

abbreviate Tank(Rd, X, a) to Tank(X, a), and Tank(Rd+1, G, ã) to Tank(G, ã).

By hypothesis, each ∂ ∈ Tan1(X) has a unique ∂̃ ∈ Tan1(G) such that π∗∂̃ = ∂.

For instance,

δ̃a = δ
ã
, ∀a ∈ X.

Define the 1-jet f̃ :Tan1(X)→ R by

〈∂, f̃〉 = ∂̃y.

(This definition is motivated by the fact that if f were a C1-function, then

∂̃h(x, y) = ∂h(x, f(x)),

so

∂̃y = ∂f.)

What we must do to prove the result is to extend f̃ to a suitable 1-jet on Tan1(Rd).

Let ∂(a, u) denote the tangent g 7→ 〈u,∇g(a)〉, where a ∈ Rd and u ∈ Rd.

Let

Xj = {a ∈ Rd: dimTan1(X, a) ≥ j}.

Then each Xj is closed, X0 = Rd, X1 = X, X2 is the set of accumulation points

of X, and Xd+1 ⊆ Xd.
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We may assume that Xd+1 6= ∅, for otherwise we adjoin a remote closed ball B to

X and define f ≡ 0 on B.

Let Dd+1 = Tan1(X).

We shall construct the extension of f̃ by first extending it to the closed star

Dd = Tan1(X) ∪ {∂(a, u): a ∈ Xd, u ∈ Rd}

= Tan1(X) ∪ pt−1(Xd),

then extending it to

Dd−1 = Tan1(X) ∪ pt−1(Xd−1),

and so on.

Each step in the construction is like the proof of Whitney’s extension theorem, with

an additional complication.

We say that a closed star D ⊂ Tan1(Rd) is full on Y if

Y = {a ∈ Rd: dimD(a) = d + 1}.

Thus the star Dj is full on Xj , for j = d + 1, . . . , 0.

To extend f̃ from Dj+1 to Dj , we have to define f̃∂ for ∂ ∈ Tan1(R1, a) ∼
Tan1(X, a) with a ∈ Xj ∼ Xj+1. We want to do this in such a way that the following

properties hold:

(P1) f̃ is a 1-jet on Dj , that is, f̃ is linear on rays;

(P2) f̃∂(an, un) → f̃∂(a, u) whenever ∂(an, un) ∈ Dj and ∂(an, un) → ∂(a, u) weak-

star;

(P3) for each compact K ⊂ pt(Dj), ∀ε > 0 ∃δ > 0 such that ∀a, x, y ∈ K and ∀u ∈ Rd

such that x 6= y, |x− a| < δ, |y − a| < δ,
∣∣∣ x−y
|x−y| − u

∣∣∣ < δ, and ∂(a, u) ∈ Dj we have∣∣∣∣∣ f̃(δx)− f̃(δy)
|x− y|

− f̃∂(a, u)

∣∣∣∣∣ < ε.

Note that for j > 0 we may write f(x) instead of 〈δx, f̃〉. Plainly, once we have

the above properties on D0 = Tan1(Rd), we are done, and x 7→ 〈δx, f̃〉 is the desired

extension.

The standard Whitney construction achieves the last step, from D1 to D0.

To begin, we must demonstrate that properties (P1), (P2) and (P3) hold on Dd+1.

This we do in a series of steps.
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Claim 1. Let µn ∈ spanTan1(G), ‖µn‖C1∗ ≤M , and

π]µn → ∂ ∈ Tan1(X),

weak-star in C1(Rd)∗. Then µn → ∂̃, weak-star in C1(Rd+1)∗.

Proof. Let µ be any weak-star accumulation point of {µn}. Choose a net {µnα} such

that µnα
→ µ. Then π]µnα

→ π]µ, since π] is weak-star to weak-star continuous. Thus

π]µ = ∂, so µ = ∂̃. Consequently, the intersection of the weak-star compact convex sets

weak-star clos
(
convex hull

(
{µn)}n≥N

))
(N = 1, 2, 3, . . .) is

{
∂̃
}

, so µn → ∂̃, weak-star. QED

Claim 2. f ∈ Lip(1, X)loc, that is, f ∈ Lip(1,K) for each compact K ⊂ X.

Proof. Otherwise, there exist xn, yn ∈ K such that xn 6= yn and

f(xn)− f(yn)
|xn − yn|

↑ +∞.

We may assume that xn → a and yn → a for some a ∈ K.

Consider

µn =
δ
x̃n
− δ

ỹn

f(xn)− f(yn)
.

Clearly, µn → ∂
∂y |a weak-star. Since µn ∈ I1(G)⊥, this gives ∂

∂y |a ∈ Tan1(G), which

contradicts the injectivity of π∗. QED

Claim 3. If ∂ ∈ Tan1(X, a), and g ∈ C1(Rd+1), then

∂̃g(x, y) = (∂1)g(ã) + {∂(x1 − a1)}
∂g

∂x1
(ã) + · · ·+ {∂(xd − ad)}

∂g

∂xd
(ã)

+ f̃(∂)
∂g

∂y
(ã)− (∂1)f(a)

∂g

∂y
(ã).

In particular, we have

˜∂(a, u) = u1
∂g

∂x1
(ã) + · · ·+ ud

∂g

∂xd
(ã) + f̃∂(a, u)

∂g

∂y
(ã),

whenever ∂(a, u) ∈ Tan1(X).

Proof.
g(x, y) = g(ã) + (x1 − a1)

∂g

∂x1
(ã) + · · ·+ (xd − ad)

∂g

∂xd
(ã)

+ (y − f(a))
∂g

∂y
(ã) + h(x, y)
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where h ∈ C1(Rd+1) and ∇h(ã) = 0. Thus, since ∂̃h = 0, the claim follows. QED

Claim 4. For each compact K ⊂ X there exists M > 0 such that

|f̃∂(a, u)| ≤M

whenever a ∈ K, |u| ≤ 1 and ∂(a, u) ∈ Tan1(X).

Proof. Otherwise there exist an ∈ K and un ∈ Rd such that ∂(an, un) ∈ Tan1(X) and

f̃∂(an, un) ↑ +∞.

We may assume that an → a and un → u, whence ∂(a, u) ∈ Tan1(X). Consider

µn =
˜∂(an, un)

f̃∂(an, un)
.

By Claim 3, for g ∈ C1(Rd+1),

µng → ∂g

∂y
(ã),

hence ∂
∂y |̃a ∈ Tan1(G), which is impossible. QED

Claim 5. For each compact K ⊂ X there exists M > 0 such that

‖ ˜∂(a, u)‖Ck∗ ≤M

whenever a ∈ K, |u| ≤ 1 and ∂(a, u) ∈ Tan1(X).

Proof. We have, by Claim 3,

‖ ˜∂(a, u)‖Ck∗ ≤ |u1|+ · · ·+ |uj |+ |f̃∂(a, u)|,

so the result follows from Claim 4. QED

Claim 6. Let ∂(a, u) ∈ Tan1(X) be nonzero. Then

lim
(b,v)→(a,u)

∂(b,v)∈Tan1
(X)

f̃∂(b, v) = f̃∂(a, u).

Proof. Note that away from 0, Tan1(X) is locally metrisable.

Let ∂(bn, vn) ∈ Tan1(X) and (bn, vn) → (a, u). Then by Claim 5 and Claim 1 we

get ˜∂(bn, vn)→ ˜∂(a, u),
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weak-star, hence

f̃∂(bn, vn) = ˜∂(bn, vn)y → ˜∂(a, u)y = f̃∂(a, u).

QED

Claim 7. Let K ⊂ X be compact and ε > 0. Then there exists δ > 0 such that for each

a, x, y ∈ K and each u ∈ Rd such that x 6= y, |x− a| < δ, |y − a| < δ,
∣∣∣ x−y
|x−y| − u

∣∣∣ < δ,

and ∂(a, u) ∈ Tan1(X), we have that∣∣∣∣f(x)− f(y)
|x− y|

− f̃∂(a, u)
∣∣∣∣ < ε.

Proof. Otherwise there exist an, xn, yn ∈ K and un ∈ Rd such that xn 6= yn,

xn − an → 0, yn − an → 0, xn−yn

|xn−yn| − un → 0, ∂(an, un) ∈ Tan1(X) and∣∣∣∣f(xn)− f(yn)
|xn − yn|

− f̃∂(an, un)
∣∣∣∣ ≥ ε.

We may assume that an → a ∈ K and that un → u ∈ S1. Then xn → a, yn → a and

xn − yn

|xn − yn|
→ u.

It follows that
δxn − δyn

|xn − yn|
→ ∂(a, u)

weak-star in C1(Rd)∗. By Claim 2, the functionals

µn =
δ
x̃n
− δ

ỹn

|xn − yn|
∈ spanTan1(G)

are norm-bounded in C1(Rd+1)∗, hence, by Claim 1,

µn → ˜∂(a, u)

weak-star in C1(Rd+1)∗. Thus

f(xn)− f(yn)
|xn − yn|

= µny → ˜∂(a, u)y = f̃∂(a, u).

Also, by Claim 6,

f̃∂(an, Un)→ f̃∂(a, u),
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and we get a contradiction. QED

At this stage, we are ready to commence the induction, since we have now shown

that Dd+1 has properties (P1), (P2) and (P3).

Suppose now that f̃ is defined on Dj+1 and has properties (P1), (P2) and (P3)

there. We will show how to extend f̃ to Dj . First we consider j > 0.

If Dj ∼ Dj+1 = ∅ (that is, Xj ∼ Xj+1 = ∅), then there is nothing to do, so suppose

that Xj ∼ Xj+1 6= ∅.
We put an inner product on each ray Tan1(Rd, a) by defining〈
α0 + α1

∂

∂x1
+ · · ·+ αd

∂

∂xd
, β0 + β1

∂

∂x1
+ · · ·+ βd

∂

∂xd

〉
= α0β0 + · · ·+ αdβd.

Let Pa denote the orthogonal projection of Tan1(Rd, a) on Dj+1(a) with respect

to this inner product, and let Na denote 1 − Pa, the projection on the orthogonal

complement of Dj+1(a) in Tan1(Rd, a).

We take a Whitney system for Xj ∼ Xj+1, that is, a family {Qn} of cubes and a

corresponding family {φn} of functions such that

(a) κ1 · dist(Qn, Xj+1) < sideQn < (d + 1) · dist(Qn, Xj+1),

(b) no point belongs to more than κ2 of the Qn,

(c) Xj ∼ Xj+1 ⊂
⋃∞

n=1 Qn,

and such that φn ∈ C∞cs with sptφn ⊂ Qn,
∑

φn = 1 on Xj ∼ Xj+1, 0 ≤ φn ≤ 1, and

(sideQn)|∇φn| ≤ κ3.

Here κ1, κ2, κ3 are constants that depend only on d, and by the distance between

two sets we mean the infimum of the distances of pairs of points, one from each set.

For each n, let cn be a closest point of Xj+1 to Qn.

Now, for a ∈ Xj ∼ Xj+1 and ∂ ∈ Tan1(Rd, a), we define

f̃∂ = f̃(Pa∂) +
+∞∑
n=1

φn(a)f̃ ((Na∂)→cn) .

This extends the previous f̃ , since Pa∂ = ∂ for ∂ ∈ Dj+1. Here, the Taylor maps are to

be understood as C1 Taylor maps.

Plainly, f̃ is linear on rays, since the projections Pa,Na, the Taylor maps →cn , and

the previous f̃ are all linear.
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To check the continuity of f̃∂(a, u) on Dj we must consider ∂(an, un) → ∂(a, u)

weak-star, and there are three cases:

10. ∂(an, un) ∈ Dj+1, ∂(a, u) ∈ Dj+1;

20. ∂(an, un) ∈ Dj ∼ Dj+1, a ∈ Xj+1;

30. ∂(an, un) ∈ Dj ∼ Dj+1, a ∈ Xj .

Case 10: We have f̃∂(an, un)→ f̃∂(a, u) by the induction hypothesis.

Case 20: We have

f̃∂(an, un) = f̃Pan
∂(an, un) +

+∞∑
m=1

φm(an)f̃ ((Nan∂(an, un))→cm) .

Let P ′a denote the projection on Rd corresponding to Pa, that is,

Pa∂(a, u) = ∂(a, P ′au), ∀u ∈ Rd.

Let vn = P ′an
un. Then

Pan
∂(an, un) = ∂(an, vn)

Nan
∂(an, un) = ∂(an, un − vn)

and (Nan
∂(an, un))→cm = ∂(cm, un − vn).

Then dist(an, Xj+1)→ 0 as n ↑ ∞, so

sup{|cm − a|:φm(an) 6= 0} → 0,

and hence

f̃∂(an, un) = f̃∂(an, vn) +
+∞∑
m=1

φm(an)f̃∂(cm, un − vn)

= f̃∂(a, vn) +
+∞∑
m=1

φm(an)f̃∂(a, un − vn) + o(1)

= f̃∂(a, un) + o(1), since
+∞∑
m=1

φm(an) = 1

= f̃∂(a, u) + o(1).

Case 30: Consider the sequence of orthogonal projections P ′an
on Rd. Each limit

point Q of {P ′an
} is a rank j − 1 orthogonal projection, and ∂(a, u) ∈ Tan1(X, a) ∀u ∈

imQ. Since

dim{u : ∂(a, u) ∈ Tan1(X, a)} = j − 1,
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Q is unique, so {P ′an
} converges, and indeed P ′an

→ P ′a. Thus, bearing in mind that all

but a finite number of φm are zero on all an’s,

Pan
∂(an, un) = ∂(an, P ′an

u)

= ∂(a, P ′au) + o(1),

Nan
∂(an, un) = ∂(a, u− P ′au) + o(1),

φm(an) = φm(a) + o(1),

f̃∂(an, un) = f̃∂(a, P ′au) +
+∞∑
m=1

φm(a)f̃∂(cm, u− P ′au) + o(1)

= f̃∂(a, u) + o(1).

If the property (P3) fails, then there exists compact K ⊂ ptDj , ε > 0, an, xn, yn ∈
K and un ∈ Rd such that xn 6= yn, xn − an → 0, yn − an → 0,

xn − yn

|xn − yn|
− un → 0, ∂(an, un) ∈ Dj

and ∣∣∣∣∣ f̃(δxn)− f̃(δyn)
|xn − yn|

− f̃∂(an, un)

∣∣∣∣∣ ≥ ε.

We may assume that an → a, un → u, and hence that xn → a, yn → a, xn−yn

|xn−yn| → u,

∂(a, u) ∈ Dj and (using property (P2))∣∣∣∣∣ f̃(δxn)− f̃(δyn)
|xn − yn|

− f̃∂(a, u)

∣∣∣∣∣ ≥ ε

2
.

Since j > 0, then ptDj = X, so ∂(a, u) ∈ Tan1(X) and Claim 7 gives a contradic-

tion. Thus (P3) holds.

It remains to consider the last case, j = 0. The extension formula is then the

classical Whitney formula

f̃ δa =
+∞∑
n=1

φn(a)f̃(−→δa
cn

),

f̃ δ(a, u) = ∂(a, u)(x 7→ f̃ δx).

The f̃ that we begin with is a full set of Whitney data on D1, and the proof in this case

is simpler and well-known. (It is at this stage that the condition diamQn · |∇φn| ≤ κ

becomes important.) We omit the details. QED

We note a corollary of the proof.
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Corollary. If ∂ ∈ Tan1X then there exist µnm ∈ span{δa : a ∈ X} such that

∂ = weak–star lim
n↑∞

weak–star lim
m↑∞

µnm.

More specifically, if ∂(a, u) ∈ Tan1(X), then there exist xnmi, ynmi ∈ X with xnmi 6=
ynmi, un1, . . . , und ∈ Rd, and λni ∈ R such that

xnmi − ynmi

|xnmi − ynmi|
→ uni as m ↑ +∞,

λn1un1 + · · ·+ λndund → u as n ↑ +∞.

Proof. Let T (X) be the weak-star closure in Tan1(Rd) of the star

{αδa + ∂(a, u) : α ∈ R, u ∈ D(X, a)}.

We may carry out the whole proof with T (X) in place of Tan1(X).

We claim that T (X) = Tan1(X). If not, choose (a, u) ∈ Tan1(X) with ∂(a, u)

orthogonal to T (X)(a) with respect to the inner product on Tan1(Rd, a).

With Xj = {a ∈ X : dimT (X)(a) ≥ j}, choose j such that a ∈ Xj ∼ Xj+1.

Take f ∈ C1 with f(x) = 〈u, x〉 on Xj+1 and f = 0 near a. The extension formula,

applied to the restriction f |X, gives

f̃∂(a, u) = 0 +
∑

n

φn(a).1 = 1.

Denote the extension by f∗. Then f − f∗ ∈ C1 and vanishes on X and has

∂(a, u)(f − f∗) = −1 6= 0.

Thus ∂(a, u) /∈ Tan1(X), a contradiction. QED

Remark. A version of this corollary was given in an earlier paper by the first author

([2], p.320), but the proof provided there was rather terse. That paper and [3] provides

a couple of explicit C1 extension theorems, but the methods used there have no hope

of dealing with C2 extensions. We have used the methods based on Tank to work out

explicit constructions for the case k = 2, d = 1, that is, C2 extensions in 1 dimension.

These will appear elsewhere.

Merrien [1] gave a constructive condition for the existence of a Ck extension in the

one–dimensional case. His condition involved the uniform continuity of a constructively–

defined divided difference f [x0, . . . , xd] on the (k + 1)–st symmetric product
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X×· · ·×X. This is less straightforward to verify in examples than the condition based

on Tank, since the latter condition involves only the examination of a finite–dimensional

vector space at each point.
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