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Abstract

The classification up to conjugacy of the homeomorphisms of the
real line onto itself is well-understood by the experts, but there does
not appear to be an exposition in print. In other words, it is math-
ematical folklore. In this expository paper, we give a complete but
concise account of the classification, in terms of a suitable topological
signature concept. A topological signature is a kind of pattern of
signs. We provide similar classifications for homeomorphisms that
fix a given subset, and for germs of homeomorphisms at a point. For
direction-reversing homeomorphisms, we show that the signature of
the compositional square is antisymmetric. We go on to apply the
conjugacy classification and signatures to reprove recent results of
Jarczyk on the composition of involutions. His results classify the re-
versible homeomorphisms (the composition of two involutions), and
show that each homeomorphism is the composition of at most four in-
volutions. The reversible direction-preserving homeomorphisms have
symmetric signatures.
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1 Introduction

Interest in reversible maps was motivated by the observation that
dihedral groups of maps arise in diverse applications (such as the
n-body problem, billiards, real and complex analysis, approximation
theory, conformal mapping, linear algebra and analytic geometry , cf.
[1]). People such as Poincaré and Birkhoff exploited reversibility in
the context of classical Hamiltonian systems. The reversible nature
of such systems helps in the investigation of their periodic orbits.
Smale’s student Devaney [2] initiated the formal study of smooth
reversible systems, not necessarily derived from a Hamiltonian, and
there has been considerable work on such systems. The main focus
has been on higher dimensions, and it is only in this century that
attention turned to the simplest case: maps in one real variable.
In recent papers, Jarczyk [4, 5] characterised the reversible maps
and obtained the remarkable result that all invertible maps are the
composition of at most two reversible maps.

The purpose of the present paper is to give an expository account,
putting Jarczyk’s results in the context of the conjugacy classifica-
tion of the real homeomorphism group. This classification may be
explained succinctly in terms of a suitable signature concept, which
we introduce and explain. We claim no novelty; the classification
belongs to folklore (cf. [3, section(4.2)]), and presumably was known
to people such as Milnor and Thurston long ago. However, a concise
and accessible account may be useful.

Let H be the group of homeomorphisms of R onto R, under com-
position. We denote the identity map by 11, and the unary minus
map by −. The subgroup H+ EH of orientation-reversing elements
has index 2, and the second coset is H− = H+ ◦ (−) = (−) ◦H+.

In section 2 , we describe the conjugacy classes of H.
Apart from 11, all the elements of finite order in H have order

2, and belong to H−. There are many of these direction-reversing,
proper involutions. In fact, each homeomorphism τ0 : [0,+∞) onto
itself determines a unique involution τ ∈ H−, defined by

τ(x) =

{

−τ0(x) , x ≥ 0,

τ◦−1
0

(−x) , x < 0.

All involutions in H− arise in this way.
Let I denote the set of involutions belonging to H (including 11),
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and for n ∈ N, let

I◦n = {τ1 ◦ · · · ◦ τn : τi ∈ I}

be the set of maps expressible as the composition of n involutions.
By definition, the reversible maps are the elements of I ◦2.

In section 3, we describe In, for each n.
In section 4 we discuss the conjugacy classes in some closely-

related homeomorphism groups, notably the subgroups that fix a
particular subset.

In section 5 we also describe the compositions of involutions in
the related group of invertible germs of continuous functions.

2 Conjugacy

2.1 Signatures

In this section we set notation and describe the conjugacy classes of
H. The results given belong to folklore at least as far as Lemma
(2.3).

To avoid confusion, we write φ◦n for the n-th compositional power
of an element φ ∈ H.

We write deg(φ) for the degree of φ (+1 for φ ∈ H+, and −1 for
φ ∈ H−).

Let S denote the space {−1, 0, 1} of signs, and the function sign :
R → S be given by

sign (x) =







−1 , x < 0,
0 , x = 0,
1 , x > 0.

We endow S with the largest topology that makes sign continuous.
Thus {1} and {−1} are open, but {0} is not. This topology is not
Hausdorff, but is convenient for our purposes.

To each φ ∈ H, we associate the continuous function

s(φ) :

{

R → S,
x 7→ sign (φ(x) − x).

Let Σ denote the family of all continuous maps h : R → S.
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One may think of an element h of Σ as the specification of a
closed set F = h−1(0), and a choice of sign (±1) on each connected
component of the complement R ∼ F .

Note that S becomes a topological semigroup with the usual prod-
uct, and acts continuously on Σ by multiplication:

(s · h)(x) = s · h(x), ∀x ∈ R,∀s ∈ S,∀h ∈ Σ..

We regard deg(φ) as an element of S, when φ ∈ H, so that deg(φ) ·h
makes sense (as an element of Σ) whenever h ∈ Σ.

It is not difficult to prove the following:

Lemma 2.1 s(H+) = Σ.

Proof. In fact, if we are given s0 ∈ Σ, and asked to produce a
φ ∈ H+ with s(φ) = s0, we observe that

• s−1
0

(0) has to be the fixed-point set of φ;

• on each connected component (an open interval) J of s−1

0
(1),

the map φ must conjugate to x 7→ x+1 on R, via an increasing
homeomorphism J → R;

• on each connected component (an open interval) of s−1
0

(−1),
the map φ must conjugate to x 7→ x− 1 on R via an increasing
homeomorphism J → R.

These properties are all we need, and it is easy to choose a φ that
has them.

By checking cases, it is straightforward to verify the following,
which expresses the effect of conjugation on s(φ):

Lemma 2.2 Let φ, ψ ∈ H. Then

s(ψ◦−1 ◦ φ ◦ ψ) = deg(ψ) · (s(φ) ◦ ψ).

Motivated by this formula, we say that two maps s1, s2 ∈ Σ are
topologically-equivalent if there exists ψ ∈ H such that

s2 = deg(ψ) · (s1 ◦ ψ).
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This defines an equivalence relation on Σ. We call the equivalence
classes topological signatures, and we denote the class [s(φ)] by
sig (φ).

Informally, one may think of a topological signature as a homeo-
morphism class of pairs (R, F ), with F closed, and a pattern of signs
(±1) on the complement of F . One is allowed to ‘reverse’ the set F ,
but then the pattern of signs must also be reversed.

To give a simple example, in the case where F is a singleton, with
two complementary components, the patterns (+1,+1) and (−1,−1)
are equivalent, but (−1,+1) is not equivalent to (+1,−1). Formally,
the three signatures in question here are [sign 2] = [−sign 2], [sign ]
and [−sign ]. Examples of homeomorphisms having these signatures
are x 7→ x+ x2, x 7→ 2x and x 7→ x/2, respectively.

As an even simpler example, letting 1 stand for the constant map
from R to 1, and similarly for −1, we have that [1] = [−1] is the
signature of any fixed-point-free homeomorphism φ ∈ H. The class
[0] is the signature only of the identity map 11.

From the definition, sig (φ) is a conjugacy invariant of φ. For
φ ∈ H+, it is essentially the only one:

Lemma 2.3 Let φ1, φ2 ∈ H+. Then sig (φ1) = sig (φ2) if and only
if there exists ψ ∈ H such that ψ◦−1 ◦ φ1 ◦ ψ = φ2.

Proof. This is straightforward. Only the ‘if’ part remains to be
proved. To prove it, one first reduces to the case in which φ1 and φ2

have the same fixed-point set F and pattern of signs on the comple-
mentary intervals J . One takes ψ to be the identity on F , and builds
it up on each separate J , by fixing any point c ∈ J and starting with
an arbitrary homeomorphism of [c, φ1(c)) onto [c, φ2(c)). The formula
φ1 ◦ ψ = ψ ◦ φ2 then dictates the extension of this homeomorphism
to the rest of J .

For instance, each map with sig (φ) = [sign ] is conjugate to x 7→
2x.

In general, sig (φ) may have very complex structure. The set of
conjugacy classes has the cardinality of the continuum.

We remark that for φ ∈ H, the signatures sig (φ◦n) of all the
positive compositional powers are obviously conjugation invariants of
φ. However, when φ ∈ H+, these invariants are all the same (and all
the powers are conjugate to one another). By contrast, for φ ∈ H−,
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the two invariants sig (φ) and sig (φ◦φ) encode different information.
Such φ have just one fixed point, and sig (φ) = [−sign ]. The fixed
point of φ is a distinguished fixed point of φ◦φ, and conjugation maps
this distinguished point to the distinguished point of the conjugate.
Moreover,

φ◦−1 ◦ (φ ◦ φ) ◦ φ = φ ◦ φ,

so Lemma (2.2) gives

s(φ ◦ φ) = −s(φ ◦ φ) ◦ φ, ∀φ ∈ H−.

This expresses an antisymmetry in the signature of φ ◦ φ. Indeed, if
we denote the fixed point of φ by p, and define τ by

τ(x) =

{

φ(x) , x ≥ p,
φ◦−1(x) , x < p,

then τ is a proper involution (which we may think of as a kind of
distorted reflection), and

s(φ ◦ φ) = −s(φ ◦ φ) ◦ τ.

If we conjugate by a homeomorphism, then this symmetry is essen-
tially preserved (— τ becomes ψ◦−1 ◦ τ ◦ψ, which is also involutive).

The direction-reversing homeomorphisms φ ∈ H− are determined
up to conjugation by such antisymmetric signatures. More precisely,
let Σodd denote the family of functions s ∈ Σ for which there exists
a proper involution τ ∈ I with s = −s ◦ τ . Then Σodd is invariant
under topological equivalence, and we have:

Lemma 2.4 The map φ 7→ sig (φ ◦ φ) induces a bijection between
the conjugacy classes of φ ∈ H− and the equivalence classes of Σodd

under topological equivalence.

Proof. There are two main points here: (1) two maps φ1 and φ2

belonging to H− and having [s(φ1 ◦φ1)] = [s(φ2 ◦φ2)] are necessarily
conjugate, and (2) each s0 ∈ Σodd is an s(φ ◦ φ) for some φ ∈ H−.
Both parts are proved in much the same way, and in the same way
as Lemma (2.3), in that the homeomorphisms that need to be con-
structed are built up separately on the complementary intervals to the
fixed-point set of φ ◦ φ, by starting with arbitrary homeomorphisms
on specific half-open subintervals. The main difference is that now
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there is pairing of the complementary intervals, and the maps are
built up simultaneously on the pairs. The map can be specified ar-
bitrarily on a half-open interval [c, φ ◦ φ(c) contained in one interval
of the pair, and is then determined on both intervals of the pair.

We record a special case, that is readily proved directly:

Corollary 2.5 Each proper involution is conjugate to −.

In fact, given a proper involution τ , we may assume it fixes 0, and
then it is conjugated to − by the map ψ defined by:

ψ(x) =

{

x , x ≥ 0,
−τ(x) , x < 0.

3 Involutions

Let Σeven denote the set of s ∈ Σ having a reflectional symmetry, i.e.
s ∈ Σeven if and only if there exists an involution τ ∈ I ∩ H− such
that

s = s ◦ τ.

(It is equivalent to require merely that there exist a τ ∈ H− with
this property.)

Membership in Σeven is preserved by topological equivalence, so
it is a property of signatures. Thus the property s(φ) ∈ Σeven is a
conjugacy invariant, for φ ∈ H+.

The following theorem characterises the compositions of two
proper involutions:

Theorem 3.1 (Jarczyk) Let φ ∈ H+. Then φ ∈ I◦2 if and only if
s(φ) ∈ Σeven.

Proof. Let φ ∈ I◦2. There are two cases:

1◦ φ = 11. In this case, s(φ) ≡ 0, and obviously belongs to Σeven.

2◦ φ = τ1 ◦ τ2, where the τi are distinct proper involutions. If φ(x) >
x, then

φ(τ2(x)) = τ1(x) > τ1(φ(x))
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(since τ1 is direction-reversing), and this equals τ2(x). Similarly,
one has the implications

φ(x) = x ⇒ φ(τ2(x)) = τ2(x)

and
φ(x) < x ⇒ φ(τ2(x)) < τ2(x).

Thus
s(φ) ◦ τ2 = s(φ),

and so s(φ) ∈ Σeven.

This proves the ‘only if’ part.
For the other direction, suppose that s(φ) ∈ Σeven. Choose an

involution τ2 such that s(φ ◦ τ2) = s(φ).
We proceed to construct an involution τ1 such that τ1 ◦φ = φ◦τ2.

We take τ1 = τ2 on the fixed-point set F = s(φ)◦−1(0) of φ. The
involution τ2 pairs each component interval J of R ∼ F with another
interval J ′ on the other side of the fixed point of τ2. We pick a
point c ∈ J and define τ1 as an arbitrary homeomorphism of the
half-open interval [c, φ(c)) ⊂ J onto (τ2(c), φ(τ2(c))] ⊂ J ′. There is
then just one way to extend τ1 to the rest of J ∪ J ′, while preserving
the identity τ1 ◦ φ = φ ◦ τ2. The map defined in this way on F and
its complementary intervals is a continuous involution and behaves
as required.

Obviously, Σeven is a proper subset of Σ, so (as if it needed proving)
there are elements of H+ that do not belong to I◦2. The composition
of three proper involutions belongs to H−, so the least possible n that
could have I◦n = H is 4. This is what happens:

Theorem 3.2 (Jarczyk) (1) Each φ ∈ H+ belongs to I◦4.
(2) Each φ ∈ H− belongs to I◦3.
(3) Thus I◦4 = H.

Proof. (1) Fix φ ∈ H+.
In the special case when sig (φ) = [1], φ is conjugate to translation

by 1, and factors as the composition of two reflections. Otherwise, φ
has at least one fixed point.

We may assume that 0 is fixed by φ.
We claim that there exist φ1, φ2 ∈ H+, such that sig (φ1) =

[sign 2], sig (φ2) = [−sign 2], and φ = φ1 ◦ φ2.
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This will suffice, because, [±sign 2] are symmetric signatures, and
hence each φi is the composition of two involutions.

To prove the claim, first take

φ2(x) =
1

2
· min{φ(x), φ◦−1(x)},

whenever x ∈ R. Then one readily verifies that φ2 ∈ H+, φ2(0) = 0,
φ2(x) < x/2 when x > 0, and φ2(x) < 2x when x < 0. Thus the sign
of φ2(x) − x is negative when x 6= 0, and sig (φ2) = [−sign 2].

Next, take φ1 = φ◦φ◦−1
2

. Routine calculation shows that φ1(x) >
2x when x > 0 and φ1(x) < x/2 when x < 0. Thus sig (φ1) = [sign 2].

By construction, φ = φ1 ◦ φ2, and we are done.

(2) This may be proved by means of a similar trick to (1): Given
φ ∈ H−, one chooses an involution τ1 having the same fixed point as
φ, and such that τ1 ◦φ has signature [sign 2]. This is just a matter of
squeezing the graph of τ1 above the graph of φ, in such a way that
φ(x) always exceeds (say) twice the maximum of φ(x) and φ◦−1(x).

4 Special Signatures

4.1 Oriented Signatures

We confined attention in the foregoing to conjugacy classes with re-
spect to H. One could also consider the conjugacy classes of elements
of H+ in H+. This leads to the definition of oriented topological
equivalence: we say that s1 and s2 ∈ Σ are oriented-topologically-
equivalent if there exists ψ ∈ H+ such that

s2 = s1 ◦ ψ.

We call the corresponding equivalence classes the oriented topological
signatures. Obviously, each topological signature is the union of one
or two oriented topological signatures (depending on whether or not
it is symmetric). One may also see that the H+-conjugacy classes
of elements of H+ are in bijective corrrespondence with the oriented
topological signatures.

It is perhaps worth remarking that the signatures introduced here
provide a ready tool for the classification of the normal subgroup
structure of H. We confine ourselves to a brief summary.
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By the support of a function s ∈ Σ, we mean the complement in
R of the interior of s◦−1(0). We denote it by spt(φ). We name three
subsets of H:

Ha = {φ ∈ H : spt(φ) is bounded above},
Hb = {φ ∈ H : spt(φ) is bounded below},
Hc = {φ ∈ H : spt(φ) is bounded }

These are all subgroups, and contained in H+. One has:

Theorem 4.1 (1) Hc and H+ are the only proper normal subgroups
of H.
(2) Ha, Hb and Hc are the only proper normal subgroups of H+.
(3) Hc is simple.

The proof involves techniques similar to those already used, and
a couple of facts about s-functions:

1. Inverses have opposite s-functions: s(φ◦−1) = −s(φ);

2. For homeomorphisms φ1, φ2 ∈ H+, there is no tidy rule about
the s-function of a composition, in general, but if s(φ1) ≥ 0 and
s(φ2) ≥ 0, then

s(φ1 ◦ φ2) ≥ max{s(φ1), s(φ2)}.

These facts are useful because a normal subgroup N of H (respec-
tively, H+) corresponds to a family Σ(N) of s-functions closed under
the operation

(s(φ), s(ψ)) 7→ s(φ◦−1 ◦ ψ),

and also closed under topological equivalence (resp., oriented topo-
logical equivalence).

Fact 1 implies that, given φ ∈ H (resp., H+, Hc), there exist φ1

conjugate to φ and φ2 conjugate to φ◦−1 (in H, H+, Hc, resp.) such
that s(φ1 ◦ φ2) is s(φ)2, and hence nonnegative.

Fact 2 allows us to prove that each Σ(N) has as an element the
characteristic function of some open interval (empty, bounded, semi-
infinite, or all of R), and this easily yields the result.

We omit the details.
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4.2 E-fixed Signatures

If E ⊂ R is a fixed closed set, then we may consider the subgroup

HfixE = {φ ∈ H : φ(x) = x, ∀x ∈ E},

consisting of all homeomorphisms that fix each point of E. We denote
HfixE ∩H+ by HfixE+

. Evidently, if E has at least two points, then
HfixE ≤ H+ and HfixE+

= HfixE.
The s-functions s(φ), corresponding to φ ∈ HfixE, belong to the

set
ΣE = {h ∈ Σ : h(x) = 0, ∀x ∈ E}.

We say that h1 and h2 ∈ ΣE are E-fixed-topologically-equivalent if
there exists ψ ∈ HfixE with

h1 = deg(ψ) · h2 ◦ ψ.

We call the equivalence classes of this equivalence relation the E-fixed
topological signatures. Lemma(2.3) is the case E = ∅ of the following
more general result:

Lemma 4.2 Let E ⊂ R be closed. Then two elements φ1, φ2 of
HfixE+

are conjugate in HfixE if and only if they have the same E-
fixed topological signature.

The proof involves no new ideas, and is omitted.

When E is nonempty, the group HfixE+
embeds naturally as a

subgroup of a cartesian product of copies of H+, one for each com-
ponent of R ∼ E. Looking at it this way, one can see that there may
be many normal subgoups of HfixE+

, in general. In fact, there is a
bijective correspondence between the family of normal subgroups and
the set of all maps ν : R → {〈11〉,Ha,Hb,Hc,H} such that ν = 〈11〉
on E, and ν is constant on each connected component of R ∼ E.

5 Germs of Homeomorphisms

Let H denote the group of germs at 0 of elements ofH that fix 0. This
is the same as the set of germs at 0 of continuous functions f : R → R

that fix 0 and have a compositional inverse on some neighbourhood
of 0. Let H± denote the germs of elements of H± that fix 0. The
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involutions in the group H are exactly the germs from I that fix 0,
and we denote the set of these by I. Let Σ0 denote the space of
germs at 0 of elements of Σ that vanish at 0. Thus an element of Σ0

is essentially a specification of the germ of a closed set F , with 0 ∈ F ,
and an ‘eventual pattern’ of signs on the complement of this germ.
Similarly, let Σodd

0 ⊂ Σ0 and Σeven

0 ⊂ Σ0 denote the germs from Σodd

and Σeven, respectively. We define the concept of local topological
equivalence of germs of elements of Σ0 in the obvious way, and we
call the classes local signatures.

By moving back and forth between germs and functions repre-
senting those germs, and applying the previous results, we deduce
the following facts about the involution-structure of the group H.

Theorem 5.1 (1) There is a bijection between the conjugacy classes
of H+ in H and the local signatures, induced by (φ) 7→ [germ(s(φ))].
(2) There is a bijection between the conjugacy classes of H− in H and
the local signatures of elements of Σodd

0 , induced by (φ) 7→ [germ(s(φ◦
φ))].
(3) Each proper involution is conjugate to the germ of x 7→ −x.
(4) A germ g ∈ H+ is the composition of two proper involutions if
and only if the local signature of g belongs to Σeven

0 .
(5) Each germ belonging to H− is the composition of three proper
involutions.
(6) Each germ belonging to H+ is the composition of four proper
involutions.

It is worth remarking that H is isomorphic to the quotient group
H/Hc, and this provides another way to retrieve these results.

Finally, we note that combining the ideas of this and the previous
section, one may classify the conjugacy classes of the subgroup

{φ ∈ H+ : φ(x) = x on some neighbourhood of E},

whenever E ⊂ R is closed, by using “oriented fixed-near-E topologi-
cal signatures”, in an obvious sense.
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T. Ward and T. Lysaght (eds), Proceedings of the Irish Systems
and Signals Conference 2001, pp. 27-31.

[2] Robert L. Devaney. Reversible diffeomorphisms and flows.
Transactions Amer. Math. Soc. 218 (1976) 89-113.

[3] Greg Hjorth. Classification and Orbit Equivalence Relations.
Mathematical Surveys and Monographs, 75. American Math-
ematical Society, Providence, RI. 2000.

[4] Witold Jarzcyk. Reversible interval homeomorphisms. J. Math.
Anal. Appl. 272 (2002) 473-9.

[5] Witold Jarzcyk. Reversibility of interval homeomorphisms with-
out fixed points. Aequationes Mathematicae 63 (2002) 66-75.

13


