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1 Introduction

It is generally accepted nowadays that Hamilton’s greatest achievment is
his general theory of dynamics. By comparison, quaternions have had less
impact. At the same time, people continue to use and develop the theory and
techniques of quaternionic algebra and analysis, and they continue to find
new applications, so one cannot say what the verdict may be on the relative
importance of the two inventions, in the long run.

It is in the nature of mathematics that its abstract concepts find use far
from their origins. Quaternions were invented because Hamilton wanted an
algebra that would facilitate geometric work in three dimensions. Number
theory (the theory of whole numbers) is quite a different area of mathematics,
so I particularly like the fact that quaternions may be used to make an
important step in the proof of a theorem in number theory. Here is the
theorem:

Theorem 1.1 (Lagrange) Each positive integer is the sum of at most four
square positive integers.
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(Fermat claimed to have a proof of this theorem, but we usually give
the credit to the first person who publishes a proof, and, as in other cases,
Fermat did not reveal his proof.)

It is slightly more convenient to discuss this in the equivalent form: Each
nonnegative integer is the sum of four square integers. The point is that,
by allowing zero into consideration, we can always use exactly four numbers
to represent a given number. For instance, 6 is not the sum of four positive
squares, but it is 22 + 12 + 12 + 02.

2 Sums of Squares

The squares 1, 4, 9, . . . are relatively rare among positive integers. The sums
of at most two squares are

0 = 02 + 02, 1 = 02 + 12, 2 = 12 + 12, 4 = 02 + 22, 5 = 12 + 22, 8 = 22 + 22,

and so on. It is a useful exercise for a programming class to write code to
generate the numbers of this form that are less than or equal to 100 (or 1000,
10000,. . .). For instance, using Maple:

> S2S:= proc( N )

# returns a list of the sums of 2 squares <= N

local A,B,C,n,m;

A:= seq( seq( m^2+n^2,

m=0..floor(sqrt(N-n^2))

),

n=0..sqrt(N)

); # sequence of all the sums <= N

B:= {A}; # cast to set; removes duplicates

C:= sort( [B[]] ); # cast to list and sort.

end proc;

> S2S(100): # output supressed.
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The sorting step is probably unnecessary, in practice, since Maple im-
plementations will probably store the elements of a set of numbers in the
natural order.

Inspection of this list, and longer ones, reveals that there are substantially
more sums of two squares than of one square, but there are gaps: the numbers
3,6,7,11,12,14,15, etc. are missing.

What is the pattern?
Mathematicians always look for structure, and the key structure here is

the semigroup. By definition, a set S of nonnegative numbers is a multiplica-
tive semigroup if and only if it has the product of each pair of elements as
another element, i.e.

x ∈ S
y ∈ S

}
⇒ xy ∈ S.

For example:

1. The set N of all positive integers is a multiplicative semigroup.

2. The set Z+ of all nonnegative integers is a multiplicative semigroup.

3. The set 10• of all nonnegative powers of 10 is a multiplicative semi-
group.

4. The set E of all even positive numbers is a multiplicative semigroup.

5. The set O of all odd positive numbers is a multiplicative semigroup.

6. The set 〈6〉 of all positive multiples of 6 is a multiplicative semigroup.

7. The only finite multiplicative semigroups are the empty set ∅, and {0},
{1}, and {0, 1}.

If S is a multiplicative semigroup, then so are

S ∪ {0}, S ∪ {1}, S ∼ {0}, S ∼ {1},

i.e. a semigroup remains a semigroup if 0 or 1 (or both) are added or removed.
The following fact is basic:

Lemma 2.1 If S is a multiplicative semigroup of nonnegative integers, and
all the primes belong to S, then all integers greater than 1 belong to S.
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Proof. This is just a restatement of part of the Fundamental Theorem of
Arithmetic: every integer greater than 1 is a product of prime numbers.

The connection between semigroups and sums of two squares is:

Theorem 2.2 The set

S2 = {m2 + n2 : n ∈ Z+, m ∈ Z+}

of sums of two nonnegative squares is a multiplicative semigroup.

Proof. We use complex numbers c = a+ ib, and recall that the modulus, or
absolute value is given by

|c| = |a + ib| =
√

a2 + b2,

where
√

denotes the nonnegative square root. Also, the complex conjugate
is

c̄ = a + ib = a− ib,

and is related to the absolute value by

|a + ib|2 = (a + ib)(a− ib),

i.e. |c|2 = cc̄.
Recall that a is called the real part of c, denoted <c, and b the imaginary

part, =c.
Finally, note that

c1c2 = c1 · c2,

i.e. the complex conjugate of a product is the product of the complex con-
jugates.

Now suppose m1, n1, m2, n2 are nonnegative integers. We want to show
that

(m2
1 + n2

1)(m
2
2 + n2

2)

is the sum of two squared integers, i.e. has the form

m2
3 + n2

3

for some integers m3, n3.
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Take
c1 = m1 + in1,
c2 = m2 + in2,

m3 = <(c1c2),
n3 = =(c1c2).

Then
m3 = m1m2 − n1n2, and n3 = m1n2 + m2n1 (1)

are obviously integers, and

(m2
1 + n2

1) · (m2
2 + n2

2) = |c2
1| · |c2

2|
= c1 · c1 · c2 · c2

= (c1 · c2) · (c1 · c2)

= (c1 · c2) · (c1 · c2)
= |c1 · c2|2
= m2

3 + n2
3.

Thus we are done.

For instance, 5 = 12 + 22, 13 = 22 + 32, so 65 is the sum of two squares,
and the formula (1) gives us two numbers that do the trick:

m3 = 1× 2− 2× 3 = −4, n3 = 1× 3 + 2× 2 = 7,

65 = 42 + 72.

A person could perhaps impress their friends by pushing the boat a bit further
out:

85 = 92 + 22, 97 = 92 + 42,

so
8245 = (9× 9− 2× 4)2 + (9× 4 + 2× 9)2 = 732 + 542.

Starting from this point, standard texts on number theory go on to char-
acterise the numbers that are sums of two squares. The end result is:

Theorem 2.3 (Euler) A number n ∈ Z+ belongs to S2 if and only if

n = r2p1 · · · pk,

where r is an integer and the pi are primes congruent to 1 or 2 modulo 4.
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Note that 2 is the only prime conguent to 2 modulo 4. The primes excluded
are those congruent to 3 modulo 4, such as 3, 7, 11, 19, etc.

We omit the proof of this result. If you wish to pursue it, you could look
at one of the references at the end of the paper.

3 Quaternions

We would like to use a similar approach for

S4 = {m2
1 + m2

2 + m2
3 + m2

4 : mi ∈ Z},

the set of all numbers expressible as the sum of four nonnegative square
integers, and in fact we can do this by replacing the complex numbers by the
quaternions.

A quaternion q takes the form

q = a + bi + cj + dk,

where a, b, c and d are real numbers, and the (distinct!) quaternion units i,
j, k satisfy

i2 = j2 = k2 = −1 ,
ij = k , jk = i , ki = j,
ji = −k , ki = −i , ik = −j.

Apart from the famous oddity that the multiplication of i, j, and k is non-
commutative, the usual rules of arithmetic apply:

q(q1 + q2) = qq1 + qq2,
(q1 + q2)q = q1q + q2q,

and, provided a is real,

(aq)q1 = a(qq1) = q(aq1) = (qq1)a.
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Thus if q = a + bi + cj + dk and q1 = a1 + b1i + c1j + d1k, then we calculate

qq1 = (a + bi + cj + dk)(a1 + b1i + c1j + d1k)

= aa1 + ab1i + ac1j + ad1k
+ba1i + bb1i

2 + bc1ij + bd1ik
+ca1j + cb1ji + cc1j

2 + cd1jk
+da1k + db1ki + dc1kj + dd1k

2

= (aa1 − bb1 − cc1 − dd1)
+(ab1 + ba1 + cd1 − dc1)i
+(ac1 − bd1 + ca1 + db1)j
+(ad1 + bc1 − cb1 + da1)k.

(2)

The conjugate of q is defined as

q̄ = a− bi− cj − dk,

and a calculation gives

qq̄ = a2 + b2 + c2 + d2.

The norm of q is defined as

|q| =
√

a2 + b2 + c2 + d2,

so |q|2 = qq̄. Note also that |q̄| = |q|.
The conjugate of a sum is the sum of the conjugates, and aq = aq when-

ever a is real, but it is not usually true that the conjugate of a product is the
product of the conjugates; the correct formula is

q1 · q2 = q2 · q1.

This can be verified by another horrendous direct calculation, but the elegant
way to see it is to observe that both sides are linear (over the reals) in both
factors q1, q2, so it suffices to check the equation for the 16 cases in which
q1, q2 are drawn from the basis {1, i, j, k}. The cases involving equal factors
or the factor 1 are trivial, so given the symmetries of the system, this boils
down to one equation:

i · j = k̄ = −k = j · i = j̄ · ī.
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This allows us to imitate the calculations for complex numbers (taking
care about the order of factors!), and get

|q1 · q2|2 = (q1 · q2) · (q1 · q2) = q1 · q2 · q2 · q1

= q1 · |q2|2 · q1

= q1 · q1 · |q2|2
= |q1|2 · |q2|2
= (|q1| · |q2|)2 ,

so taking square roots,
|q1 · q2| = |q1| · |q2|.

4 Sums of Four Squares

We are not going to prove Lagrange’s Theorem, but we can now prove one
of the main ingredients in the proof:

Lemma 4.1 (Euler) The set S4 of sums of four square integers is a multi-
plicative semigroup.

Proof. Suppose we are given integers m1, m2, m3, m4, n1, n2, n3, and n4.
We have to show that

(m2
1 + m2

2 + m2
3 + m2

4) · (n2
1 + n2

2 + n2
3 + n2

4)

is the sum of four squares.
Take q1 = m1 + m2i + m3j + m4k and q2 = n1 + n2i + n3j + n4k, and let

q1 · q2 = p1 + p2i + p3j + p4k.

Then from the formula (2) it is clear that the pi are all integers, and

(m2
1+m2

2+m2
3+m2

4)·(n2
1+n2

2+n2
3+n2

4) = |q1|2·|q2|2 = |q1·q2|2 = p2
1+p2

2+p2
3+p2

4,

so we are done.

This lemma reduces the problem of proving Lagrange’s Theorem to the
problem of proving that each prime is the sum of four squares. This is not a
trivial remainder, and in fact it defeated Euler.
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If you wish to get to the end of the story, you can read an account of the
rest in Burton [B] or Herstein [H], for instance.

It is remarkable that Euler found his lemma long before the invention of
quaternions. The above proof makes it really transparent, but he actually
came up with what is effectively the same formula for the components pi

by sheer ingenuity. Armed with a knowledge of quaternions, you can easily
reconstruct his formulas by substituting q1 and q2 into the formulas (2),
getting:

(m2
1 + m2

2 + m2
3 + m2

4) · (n2
1 + n2

2 + n2
3 + n2

4)

= (m1n1 −m2n2 −m3n3 −m4n4)
2

+(m1n2 + m2n1 + m3n4 −m4n3)
2

+(m1n3 + m3n1 −m2n4 + m4n2)
2

+(m1n4 + m4n1 + m2n3 −m3n2)
2.

Now you can really amaze your friends by writing huge numbers as the
sum of four squares. For instance, take 6469693230, which is the product of
the first ten primes. We have

2 = 02 + 02 + 12 + 12

3 = 02 + 12 + 12 + 12

5 = 02 + 02 + 12 + 22

7 = 12 + 12 + 12 + 22

11 = 02 + 12 + 12 + 32

13 = 02 + 02 + 22 + 32

17 = 02 + 02 + 12 + 42

19 = 12 + 12 + 12 + 42

23 = 12 + 22 + 32 + 32

29 = 02 + 02 + 22 + 52.
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Following the quaternion method we used to prove Euler’s Lemma, we form
the quaternions

a2 = 0 + 0i + 1j + 1k
a3 = 0 + 1i + 1j + 1k
a5 = 0 + 0i + 1j + 2k
a7 = 1 + 1i + 1j + 2k

a11 = 0 + 1i + 1j + 3k
a13 = 0 + 0i + 2j + 3k
a17 = 0 + 0i + 1j + 4k
a19 = 1 + 1i + 1j + 4k
a23 = 1 + 2i + 3j + 3k
a29 = 0 + 0i + 2j + 5k.

Then we multiply them all together, getting

−70176− 37594i + 6997j + 9097k.

A quick calculation verifies that

701762 + 375942 + 69972 + 90972 = 6469693230,

as expected.

Here are a few exercises that can be tackled using the methods developed
above:

1. Express the following numbers as the sum of four squares:

(a) 2640330.

(b) 200560490130.

(c) 277945762500.

2. (a) 1462500.

(b) 2371330.

(c) 44240625.

(Hint: Start by factorising the number, in each case.)

We close by remarking that the sums of three squares cannot be tackled
in this kind of way, and the theorem that characterises these (due to Gauss)
is quite deep. You can find it in Serre [S].
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