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A CONTROLLABILITY CRITERION FOR SWITCHEDLINEAR SYSTEMSJESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1Abstrat. We report su�ient onditions on a swithing signalthat guarantee that the solution of a swithed linear system on-verges asymptotially to zero. These onditions apply to ontinu-ous, disrete-time and hybrid swithed linear systems, with eitherentirely stable subsystems or a mixture of stable and unstable sub-systems. The onditions are general enough to allow engineers todesign swithing signals that make swithed systems ontrollable.1. IntrodutionIn Siene and Engineering one frequently meets systems that onsistof a family of subsystems and a swithing signal whih determineswhih subsystem is ativated at eah time.When all the subsystems are linear, one has a swithed linear system(1) .
x(t) = Aσ(t)x(t)where σ : [0, +∞) → {1, · · · , n} is the swithing signal and Ai : R

m →
R

m (i = 1, · · · , n) are matries that haraterise the subsystems.The large number of areas in whih swithed linear systems appearmakes their study a matter of real onern and great importane [3, 8,12℄. Its theoretial importane [3, 9, 10, 11, 13℄ derives from its pratialimportane: one needs to understand under what irumstanes thesystem (1) is stable, or what swithing signals make the systems stable.Liberzon and Morse [3℄ formulated three basi problems in relationto the stability of swithed systems.�Problem A: Find onditions that guarantee that the swithed systemis asymptotially stable for any swithing signal�.�Problem B: Identify those lasses of swithing signals for whih theswithed system is asymptotially stable�.�Problem C: Construt a swithing signal that makes the swithedsystem asymptotially stable�.01Supported by the HCAA network. The hospitality of the CRM at Bellaterra,Barelona, is also gratefully aknowledged.1
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2 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1The ondition of asymptoti stability referred to in Problem A, is de-sirable in pratial appliations. Unfortunately, the theorems that pro-vide solution (or partial solutions) to Problem A involve onditions thatare either omputationally-infeasible (suh as the existene of generalLyapunov funtions, or onditions on the joint spetral radius of thefamily of matries [1, 2℄, or too restritive for many appliations (suhas the existene of Lyapunov funtions in partiular forms, symmetrisystems, pairwise ommutativity of the subsystems, and Lie-algebraionditions, [4, 5, 6, 7, 9, 10℄). On the other hand, it is well-known thatthere exist systems that exhibit instability even though all their subsys-tems are asymptotially stable [3, 4℄. As a result, one sees the neessityof solving Problem B in pratie, in order to deal with the appliations.More often than not, Problem B is studied under the assumption thatall the individual subsystems are asymptotially stable [3, 6℄. However,for some appliations it is onvenient to allow subsystems that may bestable or unstable.In this paper, we establish onditions on the swithing signal of aswithed linear systems that are su�ient to ensure asymptoti stabil-ity. We allow both stable and unstable subsystems. Our analysis willapply both to random and to deterministi swithing signals σ(t).The paper is organised as follows. First we work on ontinuousswithed linear systems, then on disrete systems. Afterwards we om-bine these to study hybrid systems. Then we apply our results aboutproblems of type B to the design of swithing signals in order to solveproblems of type C. 2. Continuous SystemsConsider a ontinuous-time system (1). We shall refer to �swithingon and o�� the i-th subsystem or the matrix Ai, in the obvious sense:the i-th subsystem is �on� whenever σ(t) = i, and swithing ourswhen the value of σ(t) hanges. It is immaterial for the evolution ofthe system whih value is taken by σ(t) at these swithing times. Wewill also say that the system is �ruled by� the matrix Ai when the i-thsubsystem is on.We make some basi assumptions:Assumption 1: We assume that there are a �nite number of swithesin eah �nite time intervalThis rules out �dithering�behaviour at arbitrarily-short time-sales[3, 4℄ . (However, we will allow instantaneous hanges, or shoks to thesystem when we onsider hybrid systems later).This assumption allows us to de�ne funtions ni, as follows:



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 3De�nition 1. ni(t), for t ≥ 0, denotes the number of disjoint (om-pleted or under way) time periods up to and inluding time t duringwhih the matrix Ai is swithed on.Assumption 2: We also assume that the system swithes on eahsubsystem in�nitely often.This is the same as saying that eah ni(t) tends to +∞ as t ↑ ∞.This ondition makes sense from a pratial point of view, and isnot a real restrition in pratie. If some subsystem is not used after agiven time, then it an be dropped from the analysis without a�etingthe outome, as regards asymptoti stability.For eah i, the matrix Ai will be swithed on repeatedly. We neednotation for the lengths of time it is used.De�nition 2. Let tij denote the duration of the j-th time period duringwhih the system is ruled by matrix Ai.Thus tij (j = 1, 2, 3, . . .) is an in�nite sequene of positive real num-bers.De�nition 3. We denote by mi(t) the total duration of the periods upto time t for whih the i-th subsystem is swithed on.Thus, if time t is the end of the j-th period during whih Ai isswithed on, mi(t) will equal the sum ti1 + · · ·+ tij . Thereafter, mi(t)will remain onstant until the beginning of the next period when Ai isswithed on, and will then start inreasing with derivative 1.We denote by ‖x‖ the norm of x ∈ R
m, with respet to some �xednorm on R

m, and by ‖A‖ the indued norm of an m by m matrix A:
‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1}.For instane, if we use the usual Eulidean norm on R

m, then ‖A‖ is√
λ, where λ is the largest eigenvalue of A∗A.The norm ‖ · ‖ determines n one-parameter funtions t 7→ ‖etAi‖,whih we refer to as the norms of the �ows orresponding to the nsubsystems. The swithing funtion σ determines, for eah time t,the time-weighted geometri mean of the norms of the �ows in the i-thsubsystem up to the last swith at or before that time, whih we denoteby

〈eAi〉 = 〈eAi〉(t) :=





ni
∏

ij=1

∥

∥eAitij
∥

∥





1

mi



4 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1We let the asymptoti limit of these means be
ci = lim sup

t→∞

〈eAi〉.Remark 1. One ould inlude a fator in the de�nition of 〈eAi〉 toaount for the hange sine the last swith, or use the value of miat the last swithing-time. These variant de�nitions produe quantitieswhih will not di�er materially from one another under the onditionsof the theorem stated below. The present version is easiest to use, inpratie.We observe that eah ci < +∞. In fat, ci is bounded by a onstant(depending only on the norm used) times the spetral radius of thematrix eAi (the maximum of the absolute values of its eigenvalues).For a similar reason, eah ci will be bounded away from zero.It is of ruial importane for our stability analysis whether someof the ci are less than 1. If Ai is a Hurwitz matrix, i.e. has all itseigenvalues in the left half-plane, then ‖ exp(tAi)‖ < 1 when t is largeenough, so one may arrange that ci < 1 by insisting that all the tij staygreater than a suitable lower bound. However, it may well happen that
ci > 1 for a Hurwitz Ai, depending on the norm used and the tij .Let di = max{ci, 1}. We will use di instead of ci when we do not wishto rely on the stability of subsystem i to stabilize the entire system.Now let

µi = lim inf
t↑∞

mi(t)

t
, νi = lim sup

t↑∞

mi(t)

t
,for i = 1, . . . , n. These quantities are asymptoti bounds for the pro-portion of the time that the i-th system is swithed on.Assumption 3. We assume that for some integer k with 1 ≤ k ≤ n,we have ci < 1 for i ≤ k, and(2) cµ1

1 · · · cµk

k · dνk+1

k+1 · · · dνn

n < 1.(Here, we employ the usual onvention, aording to whih the emptyprodut equals 1; thus if k = n, the produt d
νk+1

k+1 · · ·dνn
n = 1.)We all the systems A1,. . .,Ak the stabilizing systems. The otherswe refer to as bad (even though they may be either unstable systemsor systems with ci < 1 that we don't use to stabilize the whole).Assumption 3 says, inter alia:

• There is at least one stabilizing system.
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• If there is any unstable system, then some stable system isswithed on for at least a �xed proportion of any su�iently-long time period.
• Over long time periods, the stabilizing systems do enough (ina rather rude sense) to dampen out the e�ets of the unstablesystems.For instane, the assumption will hold if 1 ≤ k < p ≤ n, ci < 1 when

i < p, and
c1 · · · ck (cp · · · cn)s < 1,and for eah j ≥ p and eah i ≤ k

lim inf
t↑∞

mi(t)

mj(t)
>

1

s
.In other words, for eah unstable system Aj and eah stabilizing system

Ai, the system Aj is used for less than s times as long as Ai over alllong time periods. A simple example of this is when
c1 · (cp · · · cn)s < 1,and the system A1 has µ1 > 1/s, i.e. is used for more than a proportion

1/s of the time, in the large. This may be used, rather brutally, tostabilize a given system by adding a very stable matrix and insistingthat it be used often enough.More generally, given a system with ci < 1 for i ≤ k and
c = cµ1

1 · · · cµk

k · dνk+1

k+1 · · · dνn

n > 1,one may stabilize it by adding a single stable system A0, hoosing t0 > 0suh that
‖et0A0‖ = λ < 1,and swithing on A0 for t0 time-units (seonds, miroseonds, or what-ever is appropriate to the appliation) in every period of Nt0 time-units,so that c0 = λ; if the rest of the system is run as before in the remaining

(N −1)t0 time-units of eah period, then the new swithed system willbe stable if
c

1

N

0 · c < 1.Obviously, there will be a trade-o� between the severity of the damping(greater if c0 is less) and the proportion of time that must be devotedto damping.The following theorem gives us su�ient onditions to ontrol a on-tinuous system.



6 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1Theorem 1. Consider a swithed linear system of the form (1) thatsatis�es Assumptions 1, 2 and 3. Then eah solution x(t) of (1) tendsasymptotially to zero.Proof. After a time t, for eah i, the transfer matrix Ai will have beenused for ni(t) omplete time periods. One of the matries will be ur-rently in use for the (ni + 1)-st time. Taking norms we obtain(3) ‖x(t)‖ ≤
n1
∏

j=1

∥

∥eA1t1j
∥

∥ · · ·
nn
∏

j=1

∥

∥eAntnj
∥

∥ · ‖x0‖ .Let
c := cµ1

1 · · · cµk

k · cνk+1

k+1 · · · cνn

n .By Assumption 3, we may hoose κ with c < κ < 1.Choose ε1 > 0 suh that for eah i ≤ k we have ε1 < 1 − ci, and
(c1 + ε1)

µ1−ε1 · · · (ck + ε1)
µk−ε1 · (ck+1 + ε1)

νk+1+ε1 · · · (cn + ε1)
νn+ε1 < κ.Fix ε > 0. Fix x0 ∈ R.Choose M > 0 suh that κM‖x0‖ < ε.Choose T > 0 suh that t > T implies that for eah i ∈ 1, . . . , n, wehave

〈eAi〉 ≤ ci + ε1and for 1 ≤ i ≤ k, we have
mi(t)

t
> µi − ε1and for k < i ≤ n,

mi(t)

t
< νi + ε1.Then for t > T , we have

‖x(t)‖ ≤
∏

i

〈eAi〉mi‖x0‖.In view of the fat that ci + ε1 is less than 1 when i ≤ k and is greaterthan 1 when i > k, we an bound the produt from above by
{

k
∏

i=1

(ci + ε1)
µi−ε1 ·

n
∏

i=k+1

(ci + ε1)
νi+ε1

}t

< κt.Thus if t > max{M, T}, we have ‖x(t)‖ < ǫ. Hene x(t) → 0 as t ↑ ∞,as required. �



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 73. Disrete-time systemsWhen time is disrete instead of ontinuous we have a swithed lineardisrete-time system, in whih the system (1) is replaed by(4) x(n + 1) = Aσ(n)x(n)where σ(n) is now a swithing signal de�ned for positive integral times,and Ai are m × m matries, as before.Disrete-time systems are as useful in engineering as ontinuous-timesystems, and theoretial researh is also very ative. Furthermore, theyappear in other areas where ontinuous system are not found, for ex-ample as a result of using the transfer matrix method to solve dif-ferential equations [14℄. Lately, they are beoming more importantin the study of strutures onsisting of sti�ened plates (naval arhi-teture, bridge engineering, airraft design) [15℄ and spatially periodistrutures (satellite antennae, satellite solar panels) [16℄. The theorem,stated below, will indiate to designer how to insert panels (given by
Ai in (4)) so that osillations fade o� and do not damage the struture.The notation and assumptions of the last setion an be adapted fordisrete systems, as follows.There is no need for Assumption 1.De�nition 4. For an integral time t, ni(t) denotes the number of j ≤ tfor whih σ(j) = i.Assumption 2': We assume that the system uses eah subsystemin�nitely often, i.e that eah ni(t) ↑ ∞.Now let

µi = lim inf
t↑∞

ni(t)

t
, νi = lim sup

t↑∞

ni(t)

t
,for i = 1, . . . , n. These quantities are asymptoti bounds for the pro-portion of the time that the i-th system is used.Assumption 3'. We assume that for some k with 1 ≤ k ≤ n, we have

‖Ai‖ < 1 for i ≤ k, ‖Ai‖ ≥ 1 for i > k, and(5) ‖A1‖µ1 · · · ‖Ak‖µk · ‖Ak+1‖νk+1 · · · ‖An‖νn < 1.Theorem 1 an be reformulated for disrete-time systems in the fol-lowing way:Theorem 2. Consider a swithed linear disrete-time system of theform (4). Suppose that Assumptions 2' and 3' hold. Then the systemis asymptotially stable.



8 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1The proof is almost exatly the same as before.If we onsider the problem mentioned at the beginning of the se-tion, and imagine a �solar panel� with many setions su�ering unstableosillations then the theorem will indiate the neessity of inserting apanel to extinguish the vibrations.Giving that the solar panel is a periodial struture, suh that theswithing to its di�erent omponents would be ruled by a travellingwave it follows that the swithing signal σ(t) would be given by adeterministi expression; hene, the engineer will have to hoose thematerials in the solar panel so that the assumptions of Theorem 2 holdand the travelling wave in it will extinguish.A similar argument would allow one to dedue whether a wave wouldextinguish in a system governed by Shrödinger or Maxwell equations[17℄Remark 2. It is straightforward for engineers to hek whether As-sumption 3' holds. For instane, using the Eulidean norm, one justalulates the norms
‖A‖2 =

√

λmax(A∗A)as indiated earlier. 4. Hybrid SystemsWhen the system has both ontinuous and disrete subsystems wehave a hybrid system.A linear hybrid system an be desribed as follows. Starting at anintegral time n in state x(n), the system evolves as a ontinuous systemgoverned by the equation(6) .
x(t) = Aσ1(t)x(t)(where σ1 : [0,∞) → {1, · · · , n} is a ontinuous-time swithing signal)for one unit of time. At the end of that time unit, it reahes the state

x(n + 1−). Then it hanges instantaneously aording to(7) x(n + 1) = Aσ2(n)x(n + 1−)(where σ2 : N → {1, · · · , m} is a disrete time swithing signal).These systems are more and more frequent in industry due to in-tegration of ontinuous and disrete systems. The ontinuous systemmight have its origin in the �ow or proess of a fatory, and the disreteone in the digital ontrol of the diverse steps of the proess. Hybridsystems give rise to the same problems formulated by Liberzon andMorse, that we have already mentioned formerly [13, 18, 19, 20℄. We



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 9an dedue a theorem for these systems by ombining theorems 1 and2.Theorem 3. Consider a hybrid system given by (6) and (7). Supposethat the ontinuous subsystem (6) satis�es the onditions of Theorem1 and the disrete subsystem (7) satis�es the onditions of Theorem 2.Then the hybrid system is asymptotially stable.Proof. The proof is straight-forward. It is enough to estimate the normsof the state x(t) after a time t as before, and then to gather separatelythe terms orresponding to the ontinuous subsystem and to the dis-rete one. Then the estimates in the proofs of theorem 1 and 2 arerespetively repeated for eah group of terms. �Remark 3. If one of the subsystems has a bounded solution and the an-other one tends asymptotially to zero (beause it satis�es its respetivetheorem) then the solution of hybrid system also tends asymptotiallyto zero. We will return to this remark later.5. Further Remarks5.1. Controllability. The onept of ontrollability plays an impor-tant role in linear systems. A system is ontrollable if the state anbe ontrolled by a swithing signal [10, 21, 22℄. The solution of thisproblem is ritial for designers of swithed linear systems, beause itis usually essential that the system would always be under ontrol.The question: �Does there exist a swithing sequene by whih theontrollability is realised ompletely� was �rst raised in [21℄. A ompletegeometri haraterisation for ontrollability of swithed linear systemswas established in [22℄, where su�ient and neessary onditions wereestablished. In [23℄ a onstrution method for swithing signal is pro-vided. Later, it was tried to design swithing signals in suh a way thatontrollability was ahieved with the number of swithing as small aspossible; Ji, Wang and Guo [24℄ established the relation between thenumber of swithes and the dimension of the ontrollable spae. Theseauthors onsider that although ontrollability onditions have been es-tablished, the behaviour of swithing signal to get the ontrollability isnot ompletely investigated. Within this frame are the theorems thatwe have shown is this paper; where information about swithing signalsthat give ontrollability has been shown. Furthermore, omplete on-trollability follows from the theorems, due to the fat that the initialinput does not play any role in the proof of our theorems.We have used an averaging idea in the formulation and proof ofthe theorems. This is similar to probabilisti analysis found in work



10 JESÚS SAN MARTÍN AND ANTHONY G. O'FARRELL1that uses the onept of the average dwell-time [25℄, but in ontrast tothe average dwell-time approah we have worked with swithed linearsystem that have unstable matries. This is relevant information forengineers beause they usually �nd systems of this type (swithed linearsystems ruled only by stable matries are very limiting in pratialproblems).5.2. Feedbak Stabilisation Problem. If the swithing signal ofswithed linear systems is not �xed, but depends on a parameter oran be designed by the engineers then the theorems proven in thispaper allow one to design appropriate feedbak ontrol laws to makesystem stable. Let us show how to do that.There exists a polynomial pi(t) whose degree is at most m, suh that
∥

∥eAit
∥

∥ ≤ pi(t)e
µitwhere µi = max {Reλi : λi eigenvalues of Ai}. If we bound |pi(t)| ≤

ki in [0, Ti] it follows that
〈

eAi
〉

≡





ni
∏

ij=1

∥

∥eAitij
∥

∥





1
mi

≤ kie
µitiwhere

ti =

∑mi

ij=1 tij

miis the average time that system (1) stays in subsystem given by Ai.Therefore(8) n
∏

i=1

〈

eAi
〉

≤ ke
Pn

i=1 µitiThus, the time ti an be dedued suh that theorem (1) is satis�edand asymptoti stability is obtained. It is plain to see that σ(t) will notbe unique, beause only the average time ti is onstrained, so engineersan hoose any σ(t) provided it is suh that the average time ti satis�esthe assumptions of Theorem 1.It does not matter whether the swithed linear system has unstablematries. The engineer must design the system in suh a way it spendsenough time (aording to (8)) using stabilizing matries, in order toontrol the unstable matries.For a disrete time system, theorem 2 shows that to get ontrolla-bility one must use stabilizing matries more than bad ones.For a hybrid system we an ontrol simultaneously the ontinuousand disrete subsystems aording to what we have just said about



A CONTROLLABILITY CRITERION FOR SWITCHED LINEAR SYSTEMS 11these systems. Or we an ontrol the ontinuous (disrete) subsystemif the disrete (ontinuous) has bounded solutions, due to Remark 3.Therefore, in a ontinuous system, suh as those engineers may �ndin a fatory, they would be able to add a disrete system of the typedesribed by Theorem 2 to get proess ontrollability.6. ConlusionsIf a swithed linear system has a swithing signal suh that a suitableweighted geometri average of stable subsystems dominates that of theunstable ones, then the solution of the system onverges asymptotiallyto zero. The onditions are stated for ontinuous, disrete-time orhybrid systems, and allow engineers design a swithing signal to getthe ontrollability of the designed system.The asymptoti average proportion of time in eah subsystems deter-mines the feedbak needed enabling the engineer to ontrol the system.We would like to point out two fats, under the onditions of thetheorems above:i) The ontrollability of the system is obtained although it hasunstable subsystems. That is important beause systems withunstable subsystems are very frequent in engineering.ii) If an engineer is looking for the ontrollability of a ontinuoussystem whih is really hard to ontrol then he an add a disrete-time system. In this new system, the ontrollability an beprovided by the disrete-time subsystem. That is an advantagein urrent times, where digital systems overome analogue ones,but where ontinuous systems are very widespread (think, forexample, of an oil re�nery).Referenes[1℄ V.D. Blondel and J.N. Tsitsiklis, System and Control Letters 41 (2000) 135-40.[2℄ I. Debauhies and J.C. Lagarias, Sets of matries all in�nite produts of whihonverge. Lin Alg and Appl. 161 (1992) 227-63[3℄ D. Liberzon, A.S. Morse, Basi problems in stability and design of swithedsystems, IEEE Control Systems Magazine 19(5) (1999) 59-70.[4℄ M. S. Braniky, Multiple Lyapunov funtion and other analysis tools forswithed and hybrid systems, IEEE Transations on Automati Control 43(4)(1998) 475-482.[5℄ K. S. Narendra, J. Balakrishnan, A ommon Lyapunov funtion for stableLTI systems with ommuting A-matries, IEEE Transations on AutomatiControl 39(12) (1994) 2469-2471.[6℄ D. Liberzon, J.P. Hespanha, A.S. Morse, Stability of swithed systems: a Lie-algebrai ondition, System&Control Letters 37 (1999) 117-122.
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