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1 An approximation result

This paper is a continuation of [P]. The main result of [P] is that there are
functions G defined in a neighborhood of the origin in the complex plane, which
behave in a sense as 72, such that G together with z? separates the points of (small)
disks D around the origin, and such that the function algebra [ z%, G; D] on D is not
the same as the algebra C(D) of all continuous functions on D. In this paper we
show that the other possibility also can occur: for a large class of functions
G defined in a neighborhood of the origin we show [z*, G; D] = C(D) for suffi-
" ciently small disks D around 0. We will adopt notation from [P]. In the following it
will be convenient to write the function G in the form

G(z) =231 + g(2))* .

We like to mention that Pascal Thomas, independently from us and at the
same time, worked out a special case of our main result, ie. the case g(z) = z,

[T].

Theorem. Let g be defined in a neighborhood of the origin in the complex
plane, of class C!, with g(0)=0, and such that |g.0) > |gz(0). Then
(22, 22(1 4 g(2))*; D] = C(D) for sufficiently small disks D centered ar the origin.

Proof. Let a = g,(0} and b = gz{(0). By the change of coordinate z = iw/a we may
and will assume without loss of generality that 2 =i and |b| < 1. Since the first
order partial derivatives of g are continuous near 0, Taylor’s formula can be
applied to Reg and Im g to obtain that if ¢ is a number with 0 < ¢ < 1 — |b]| the
function

r(z) =g(z) —iz — bz
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satisfies the inequality
[r(z)] £ ez

for all z in a sufficiently small disk D around 0. Note also that the generators of the
algebra separate the points of sufficiently smail disks D.
We now follow the proof of Theorem 1 in [P].

Define X = {(%, 2%(1 + g(2))*). ze D} .
Consider the map 7: €? — €2, defined by
M0, 82) = (00207 .
Then ™ Y(X) =X, u X, uX;uUX, with
Xy ={(z.2(1 + g(2))): ze D}
Xo={(~2 — 21 +g(z))); zeD} = {(z, (1 + g( — z})): zeD}
Xa={{—=zzZ(1 + g(z2))) ze D}
X, ={{z, ~ Z(1 + g(2))) zeD} = {{-z2z(1 + g(— 2))) zeD} .

By Wermer’s theorem it follows that the sets X, are polynomiaily convex. Now
Kallin’s theorem is also valid if the two angular sectors are replaced by
Sy ={Imi>0}u{0}andS. = {Imi < 0} U {0} (see reference [9] of [P]). With
p{{1,{2) ={; + {, we notice that for z in D:

Pz, 2(1 + g(2))) = z + £ + Zg(z) = 2Rez + ilz|® + b2® + 3r(z)

where [zr(z)| < &/z|%

It follows that p(z, z(1 + g(z)))eS. so p(X1) =584, In a similar way one
shows that p(X,) c S_. Since p 10y (X, U X,) contains only the origin in €2
we can apply Kallin’s theorem and conclude that X, U X, is polynomially convex.

Using the polynomial p({,,{;) = — ¢, + {, one shows similarly that X U X,
is polynomially convex.

We apply Kaliin’s theorem for the third time, now with p(€:.05)=1{.,. Since
p(X, v X,) is contained in an angular sector near the positive real axis and
p(X;0X,) in an angular sector near the negative real axis, it follows that
IN'(X)=X,uX,uX,uX 4 18 polynomially convex, By Sibony's theorem and
the O’Farrell-Preskenis—Walsh resuit we conclude as in in the proof of Theorem 1
in [P] that P(X) = C(X). This is equivalent to

[2% 22(1 + g(2)*; D] = C(D).

2 Examples

Suppose g is of class C! and both ¢,(0) and g:(0) are equal to 0. It can happen that
the algebra [ 22, 7(1 + ¢(z))*; D] is unequal to C(D) and it is also possibie that
this algebra is equal to the algebra C(D).

(1) In [P] it is shown that [z%,z2(1 + £*)723; D] %+ C(D) for (sufficiently small)
disks D.
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(2) Let fbe a real-valued function of class C*, defined in a neighborhood of 0, such
that fis even, and such that f{0) =0, f(z) > 0if z & 0.

The functions z2 and Z3(1 + izf(z))* separate the points of (small) disks
D around 0, and as in the proof of the theorem above we find
(2% 22(1 + izf(2))*; D] = C(D).
(3) Also [22, 23(1 + iz®)*; D] = C(D) if D is a disk centered at the origin. Using
the same pull-back IT as in the proof of the theorem and with

X ={(4z22(1 + i’y zeD}
one now finds
X, = {{z,Z(1 + iz®)): ze D}
X, ={(—z —2(1 +iz*):zeD} ={(z,2(1 —iz*)): zeD}
Xs={(—z 31+ iz%): ze D}
Xoe={(z, —2(1 +iz®)izeD} = {(—z,2(1 —iz*)): ze D).

Use p({,82) = ¢,® +{;® to show that X, U X, is polynomially convex and
p(l1, 8= — {1 + ¢,? to show that X3 U X, is polynomially convex. It follows
as in the proof of the theorem that [z, 23(1 + iz*)*; D] = C{D).

3 Remarks

(1) Isit true (if z* and G separate the points of D) that [z, G; D] =% C(D) for every
_ antiholomorphic function G? In the light of the theorem and the examples above

one might even conjecture that [z%, z2(1 + g(z))%; D] # C(D) for every g with
{g:(0)] < [g=(0)i.
(2} It is not clear whether the theorem can be generalized to the situation where
F and G behave like z™ and z™ with m > 2. So there is nothing known about
[F, G; D] for this case (except for even values of m: in this situation we know that
there exist examples with [F, G; D] + C(D)).
(3) Consider once again the situation that F and G are of the form
F{z)=2"(1 4+ f(z}), G{(z) = 2"(1 + g{z)) where f and g are functions defined in
a neigborhood of the origin, with f(0) = 0, g(0) = 0. The functions f and g were
supposed to be of class C! but if one is willing to drop this differentiability
condition, just assuming continuity of fand g, then one can find a counterexample
for the case m = n in the following way.

Choose sequences (ay), (), (R,) of positive numbers converging to.0 and such
that 0 < r, < R, and a;44 + Ry+1 < @z — Ry for each k.

Let Dk={'lz—ak|§rk} and Ek={|z—ak|§Rk},k=1,2,3,... Let
F(z) = z" and define a modification G of the function 2™ + z™** on the complex
plane in the following manner:

G(z) = z" 4+ "*! outside E; W E, U ..., in particular g(0) = 0
G(Z) = akm + ak'"“ on Dk-

For an appropriate choice of the sequences (r,) and (R,) and the values of G on the
sets E, — D, the function g is continuous and moreover the functions F and
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G separate the points. For any disk D centered at 0 the clements of [F, G; D] are
analytic on the interior of all sets D, which belong to D. So for any such disk
D:[F,G; D]+ C(D}).
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Note added in proof

The second author recentiy proved a generalization of the theorem for the situation where F and
G behave like z™ and z™ with m > 2.



